Two-photon absorption laser induced fluorescence measurement of atomic oxygen density in an atmospheric pressure air plasma jet. Conway, J; Gogna, G.S; Gaman, C; Turner, M.M; Daniels, S. Plasma Sources Science and Technology 2016
Our low-temperature plasma research develops solutions for global challenges in high-tech manufacturing, environment, and medicine, through coupling advanced plasma sensing with simulations.
About the Research Area
Low-temperature plasmas (LTPs) have the ability to generate and deliver reactive atomic and molecular species, UV, charged particles, and electric fields to biological targets under ambient conditions. LTPs can stimulate specific biological responses by producing Reactive Oxygen and Nitrogen Species (RONS), which mediate many physiological processes such as cell-to-cell signalling, immune response, wound healing, and cell death. These plasma-produced species are expected to mimic the functions of their native counterparts and offer unique synergies capable of stimulating specific biological responses. Our research focuses on understanding the plasma-driven mechanisms of action and engineering controllable plasma delivery strategies to enhance clinical therapies. We collaborate with many partners on this theme.
Low-temperature Plasmas Publications
Measurement of deposition rate and ion energy distribution in a pulsed dc magnetron sputtering system using a retarding field analyzer with embedded quartz crystal microbalance. Sharma, S; Gahan, D; Scullin, P; Doyle, J; Lennon, J; Vijayaraghavan, R.K; Daniels, S; Hopkins, M.B. Review of Scientific Instruments 2016
Effect of gas properties on the dynamics of the electrical slope asymmetry effect in capacitive plasmas: Comparison of Ar, H2 and CF4. Bruneau, B; Lafleur, T; Gans, T; O’Connell, D; Greb, A; Korolov, I; Derzsi, A; Donkó, Z; Brandt, S; Schüngel, E; Schulze, J; Diomede, P; Economou, D.J; Longo, S; Johnson, E; Booth, J.-P. Plasma Sources Science and Technology 2015
Control and enhancement of the oxygen storage capacity of ceria films by variation of the deposition gas atmosphere during pulsed DC magnetron sputtering. Eltayeb, A; Vijayaraghavan, R.K; McCoy, A; Venkatanarayanan, A; Yaremchenko, A.A; Surendran, R; McGlynn, E; Daniels, S. Journal of Power Sources 2015