The role of atomic oxygen in the decomposition of self-assembled monolayers during area-selective atomic layer deposition. Brady-Boyd, A; O’Connor, R; Armini, S; Selvaraju, V; Pasquali, M; Hughes, G; Bogan, J. Applied Surface Science 2022
Our low-temperature plasma research develops solutions for global challenges in high-tech manufacturing, environment, and medicine, through coupling advanced plasma sensing with simulations.
About the Research Area
Low-temperature plasmas (LTPs) have the ability to generate and deliver reactive atomic and molecular species, UV, charged particles, and electric fields to biological targets under ambient conditions. LTPs can stimulate specific biological responses by producing Reactive Oxygen and Nitrogen Species (RONS), which mediate many physiological processes such as cell-to-cell signalling, immune response, wound healing, and cell death. These plasma-produced species are expected to mimic the functions of their native counterparts and offer unique synergies capable of stimulating specific biological responses. Our research focuses on understanding the plasma-driven mechanisms of action and engineering controllable plasma delivery strategies to enhance clinical therapies. We collaborate with many partners on this theme.
Low-temperature Plasmas Publications
Helium metastable species generation in atmospheric pressure RF plasma jets driven by tailored voltage waveforms in mixtures of He and N2. Korolov, I; Leimkühler, M; Böke, M; Donkó, Z; Schulz-Von Der Gathen, V; Bischoff, L; Hübner, G; Hartmann, P; Gans, T; Liu, Y; Mussenbrock, T; Schulze, J. Journal of Physics D: Applied Physics 2020
The formation of atomic oxygen and hydrogen in atmospheric pressure plasmas containing humidity: Picosecond two-photon absorption laser induced fluorescence and numerical simulations. Schröter, S; Bredin, J; Gibson, A.R; West, A; Dedrick, J.P; Wagenaars, E; Niemi, K; Gans, T; O’Connell, D. Plasma Sources Science and Technology 2020
Corrigendum: Concepts and characteristics of the ‘COST Reference Microplasma Jet’ (Journal of Physics D: Applied Physics (2016) 49 (084003) DOI: 10.1088/0022-3727/49/8/084003). Golda, J; Held, J; Redeker, B; Konkowski, M; Beijer, P; Sobota, A; Kroesen, G; Braithwaite, N.S.J; Reuter, S; Turner, M.M; Gans, T; O’Connell, D; Schulz-Von Der Gathen, V. Journal of Physics D: Applied Physics 2019
Disrupting the spatio-temporal symmetry of the electron dynamics in atmospheric pressure plasmas by voltage waveform tailoring. Gibson, A.R; Donkó, Z; Alelyani, L; Bischoff, L; Hübner, G; Bredin, J; Doyle, S; Korolov, I; Niemi, K; Mussenbrock, T; Hartmann, P; Dedrick, J.P; Schulze, J; Gans, T; O’Connell, D. Plasma Sources Science and Technology 2019