Skip to main content
Log in

Total internal reflection ellipsometry as a label-free assessment method for optimization of the reactive surface of bioassay devices based on a functionalized cycloolefin polymer

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

We report a label-free optical detection technique, called total internal reflection ellipsometry (TIRE), which can be applied to study the interactions between biomolecules and a functionalized polymer surface. Zeonor (ZR), a cycloolefin polymer with low autofluorescence, high optical transmittance and excellent chemical resistance, is a highly suitable material for optical biosensor platforms owing to the ease of fabrication. It can also be modified with a range of reactive chemical groups for surface functionalization. We demonstrate the applications of TIRE in monitoring DNA hybridization assays and human chorionic gonadotrophin sandwich immunoassays on the ZR surface functionalized with carboxyl groups. The Ψ and Δ spectra obtained after the binding of each layer of analyte have been fitted to a four-layer ellipsometric model to quantitatively determine the amount of analytes bound specifically to the functionalized ZR surface. Our proposed TIRE technique with its very low analyte consumption and its microfluidic array format could be a useful tool for evaluating several crucial parameters in immunoassays, DNA interactions, adsorption of biomolecules to solid surfaces, or assessment of the reactivity of a functionalized polymer surface towards a specific analyte.

(a) Total internal reflection ellipsometry (TIRE) experimental setup (b) Typical Ψ and Δ spectra of the sensing substrate measured in phosphate-buffered saline (PBS)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kameoko J, Craighead HG, Zhang H, Henion JA (2001) Anal Chem 73:1935–1941

    Article  Google Scholar 

  2. Diaz-Quijada GA, Peytavi R, Nantel A, Roy E, Bergeron MG, Dumoulin MM, Veres T (2007) Lab Chip 7:856–862

    Article  CAS  Google Scholar 

  3. Laib S, MacCraith BD (2007) Anal Chem 79:6264–6270

    Article  CAS  Google Scholar 

  4. Pu Q, Oyesanya O, Thompson B, Liu S, Alvarez JC (2007) Langmuir 23:1577–1583

    Article  CAS  Google Scholar 

  5. Jonsson C, Aronsson M, Rundstrom G, Pettersson C, Mendel-Hartvig I, Bakker J, Martinsson E, Liedberg B, MacCraith B, Ohman O, Melin J (2008) Lab Chip 8:1191–1197

    Article  Google Scholar 

  6. Raj J, Herzog G, Manning M, Volcke C, MacCraith BD, Ballantyne S, Thompson M, Arrigan DWM (2009) Biosens Bioelectron 24:2654–2658

    Article  CAS  Google Scholar 

  7. Volcke C, Gandhiraman RP, Gubala V, Raj J, Cummins T, Fonder G, Nooney RI, Mekhalif Z, Herzog G, Daniels S, Arrigan DWM, Cafolla AA, Williams DE (2010) Biosens Bioelectron 25:1875–1880

    Article  CAS  Google Scholar 

  8. Gandhiraman RP, Volcke C, Gubala V, Doyle C, Basabe-Desmonts L, Dotzler C, Toney MF, Iacono M, Nooney RI, Daniels S, James B, Williams DE (2010) J Mater Chem 20:4116–4127

    Article  CAS  Google Scholar 

  9. Gubala V, Gandhiraman RP, Volcke C, Doyle C, Coyle C, James B, Daniels S, Williams DE (2010) Analyst 135:1375–1381

    Article  CAS  Google Scholar 

  10. Haake HM, Schutz A, Gauglitz G (2000) Fresenius J Anal Chem 366:576–585

    Article  CAS  Google Scholar 

  11. Liedberg B, Nylander C, Lundström I (1995) Biosens Bioelectron 10:I–IX

    Article  CAS  Google Scholar 

  12. Johansen K, Arwin H, Lundström I, Liedberg B (2000) Rev Sci Instrum 71:3530–3538

    Article  CAS  Google Scholar 

  13. Green RJ, Davies J, Davies MC, Roberts CJ, Tendler SJB (1997) Biomaterials 18:405–413

    Article  CAS  Google Scholar 

  14. Kugimiya A, Takeuchi T (2001) Biosens Bioelectron 16:1059–1062

    Article  CAS  Google Scholar 

  15. Hook AL, Thissen H, Voelcker NH (2009) Langmuir 25:9173–9181

    Article  CAS  Google Scholar 

  16. Westphal P, Bornmann A (2002) Sens Actuators B 84:278–282

    Article  Google Scholar 

  17. Poksinski M, Arwin H (2003) Sens Actuators B 94:247–252

    Article  Google Scholar 

  18. Arwin H, Poksinski M, Johansen K (2004) Appl Opt 43:3028–3036

    Article  CAS  Google Scholar 

  19. Poksinski M, Arwin H (2004) Thin Solid Films 455–456C:716–721

    Article  Google Scholar 

  20. Nabok A, Tsargorodskaya A, Hassan AK, Starodub NF (2005) Appl Surf Sci 246:381–386

    Article  CAS  Google Scholar 

  21. Nabok A, Tsargorodskaya A, Davis F, Higson SPJ (2007) Biosens Bioelectron 23:377–383

    Article  CAS  Google Scholar 

  22. Nabok A, Tsargorodskaya A, Holloway A, Starodub NF, Demchenko A (2007) Langmuir 23:8485–8490

    Article  CAS  Google Scholar 

  23. Basova T, Plyashkevich V, Hassan A, Gürek AG, Gümüs G, Ahsen V (2009) Sens Actuators B 139:557–562

    Article  Google Scholar 

  24. Balevicius Z, Vaicikauskas V, Babonas GJ (2009) Appl Surf Sci 256:640–644

    Article  CAS  Google Scholar 

  25. Larsson A, Ekblad T, Andersson O, Liedberg B (2007) Biomacromolecules 8:287–295

    Article  CAS  Google Scholar 

  26. Azzam RMA, Bashara NM (1992) Ellipsometry and polarized light. North Holland, Amsterdam

  27. Le NCH, Yokokawa R, Dao DV, Nguyen TD, Wells JC, Sugiyama S (2009) Lab Chip 9:244–250

    Article  CAS  Google Scholar 

  28. Palik ED (ed) (1985) Handbook of optical constants of solids. Academic, Orlando

    Google Scholar 

  29. Palik ED (ed) (1991) Handbook of optical constants of solids II. Academic, San Diego

    Google Scholar 

  30. Xu H, Lu JR, Williams DE (2006) J Phys Chem B 110:1907–1914

    Article  CAS  Google Scholar 

  31. De Feitjer JA, Benjamins J, Veer FA (1978) Biopolymers 17:1759–1772

    Article  Google Scholar 

  32. Liebermann T, Knoll W, Sluka P, Herrmann R (2000) Colloids Surf A 169:337–350

    Article  CAS  Google Scholar 

  33. Larsson C, Rodahl M, Hook F (2003) Anal Chem 75:5080–5087

    Article  CAS  Google Scholar 

  34. Xu H, Zhao X, Grant C, Lu JR, Williams DE, Penfold J (2006) Langmuir 22:6313–6320

    Article  CAS  Google Scholar 

  35. Schult K, Katerkamp A, Trau D, Grawe F, Cammann K, Meusel M (1999) Anal Chem 71:5430–5435

    Article  CAS  Google Scholar 

  36. Schneider BH, Dickinson EL, Vach MD, Hoijer JV, Howard LV (2000) Biosens Bioelectron 15:13–22

    Article  CAS  Google Scholar 

  37. Boozer C, Yu Q, Chen S, Lee C, Homola J, Yee SS, Jiang S (2003) Sens Actuators B 90:22–30

    Article  Google Scholar 

  38. Vareiro MMLM, Liu J, Knoll W, Zak K, Williams D, Toby A, Jenkins A (2005) Anal Chem 77:2426–2431

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the Science Foundation Ireland under grant no. 08/CE3/B754. D.E.W. is an E.T.S. Walton Visiting Fellow of Science Foundation Ireland. The authors would like to thank J. Garcia-Cordero for helping with the design and fabrication of the flow-cell. The authors also thank M. Stchakovsky and D. Sheppard from HORIBA Jobin Yvon for helping with the ellipsometric fitting.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nam Cao Hoai Le.

Additional information

Published in the special issue Optical Biochemical and Chemical Sensors (Europtrode X) with guest editor Jiri Homola.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le, N.C.H., Gubala, V., Gandhiraman, R.P. et al. Total internal reflection ellipsometry as a label-free assessment method for optimization of the reactive surface of bioassay devices based on a functionalized cycloolefin polymer. Anal Bioanal Chem 398, 1927–1936 (2010). https://doi.org/10.1007/s00216-010-4099-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-4099-4

Keywords

Navigation