Skip to main content
Log in

Theoretical study of photoionization of the isoelectronic sequence Rb+, Sr2+, and Y3+

  • Spectroscopy of Atoms and Molecules
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

The photoionization cross sections for the 4p shell of ions of the Kr isoelectronic sequence Rb+, Sr2+, and Y3+ are calculated. The configuration interaction theory and the perturbation theory are used to describe the many-electron effects. The relativistic effects are taken into account in the Pauli-Fock approximation. The calculated resonance structure of photoionization cross sections for the 4p shell in the region below the 4s threshold associated with the autoionization of the 4s-np singly excited states and the 4p4p-nln′l′ doubly excited states reproduces the results of recent measurements of total photoabsorption cross sections for the Rb+, Sr2+, and Y3+ ions. It is found that, as the nuclear charge in the isoelectronic sequence increases, the ratio between the direct and correlation parts of amplitudes of the 4s-(n/ɛ)p transition changes and, as the consequence, the minimum of the photoionization cross section of the 4s shell shifts from the continuous spectrum to the region of states of discrete spectrum. This accounts for the strong changes in the shape of the 4s-np resonances in the photoionization cross sections for the 4p shell of Rb+, Sr2+, and Y3+, as well as the distinction between the shapes of the 4s-6p 1/2 mirror resonance in the partial 4p 1/2 and 4p 3/2 photoionization cross sections for the Y3+ ion which do not suppress each other in the total photoionization cross section, as is the case for similar resonances in Rb+ and Sr2+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. P. Aufdenberg, P. H. Hauschildt, S. N. Shore, and E. Baron, Astrophys. J. 498, 837 (1998).

    Article  ADS  Google Scholar 

  2. J. Lindl, Phys. Plasmas 2, 3933 (1995).

    Article  ADS  Google Scholar 

  3. H. Daido, Rep. Prog. Phys. 65, 1513 (2002).

    Article  ADS  Google Scholar 

  4. M. Ya. Amus’ya, The Photoelectric Effect in Atoms (Nauka, Moscow, 1987) [in Russian].

    Google Scholar 

  5. V. Schmidt, Rep. Prog. Phys. 55, 1483 (1992).

    Article  ADS  Google Scholar 

  6. J. B. West, J. Phys. B 34, R45 (2001).

    Article  ADS  Google Scholar 

  7. P. van Kampen, G. O’sullivan, V. K. Ivanov, et al., Phys. Rev. Lett. 78, 3082 (1997).

    Article  ADS  Google Scholar 

  8. J. W. Cooper, Phys. Rev. 128, 681 (1962).

    Article  ADS  Google Scholar 

  9. B. M. Lagutin, Ph. V. Demekhin, I. D. Petrov, et al., J. Phys. B 32, 1795 (1999).

    Article  ADS  Google Scholar 

  10. A. Neogi, E. T. Kennedy, J. P. Mosnier, et al., in Abstracts of the 34th Conference of the European Group for Atomic Spectroscopy (Sofia, Bulgaria, 2002), p. 200.

  11. A. Neogi, E. T. Kennedy, J. P. Mosnier, et al., Phys. Rev. A 67, 042 607 (2003).

  12. P. Yeates, E. T. Kennedy, J. P. Mosnier, et al., J. Phys. B 27, 241 (2004).

    Google Scholar 

  13. V. K. Ivanov and M. A. Koulov, Proc. SPIE-Int. Soc. Opt. Eng. 4627, 93 (2002).

    ADS  Google Scholar 

  14. V. K. Ivanov and M. Koulov, Proc. SPIE-Int. Soc. Opt. Eng. 5127, 31 (2003).

    ADS  Google Scholar 

  15. B. M. Lagutin, F. V. Demekhin, I. D. Petrov, et al., Zh. Strukt. Khim. 39, 992 (1998).

    Google Scholar 

  16. H. Schmoranzer, S. Lauer, F. Vollweiler, et al., J. Phys. B 30, 4463 (1997).

    Article  ADS  Google Scholar 

  17. Ph. V. Demekhin, I. D. Petrov, B. M. Lagutin, et al., J. Phys. B 38, 3129 (2005).

    Article  ADS  Google Scholar 

  18. V. L. Sukhorukov, I. D. Petrov, and V. F. Demekhin, Opt. Spektrosk. 58(6), 1365 (1985) [Opt. Spectrosc. 58 (6), 836 (1985)].

    Google Scholar 

  19. B. M. Lagutin, I. D. Petrov, V. L. Sukhorukov, et al., J. Phys. B 29, 937 (1996).

    Article  ADS  Google Scholar 

  20. R. Kau, I. D. Petrov, V. L. Sukhorukov, and H. Hotop, Z. Phys. D 39, 267 (1997).

    Article  Google Scholar 

  21. C. E. Moore, Atomic Energy Levels (National Bureau of Standards, Washington, 1971), Vols. 1–3.

    Google Scholar 

  22. B. M. Lagutin, V. L. Sukhorukov, I. D. Petrov, et al., J. Phys. B 33, 2467 (1994).

    Google Scholar 

  23. U. Fano, Phys. Rev. 124, 1866 (1961).

    Article  MATH  ADS  Google Scholar 

  24. K. Codling and R. P. Madden, J. Res. Natl. Bur. Stand. A 76, 1 (1972).

    Google Scholar 

  25. V. L. Sukhorukov, B. M. Lagutin, I. D. Petrov, et al., J. Phys. B 27, 241 (1994).

    Article  ADS  Google Scholar 

  26. F. H. Mies, Phys. Rev. 175, 164 (1968).

    Article  ADS  Google Scholar 

  27. S. L. Sorensen, T. Aberg, J. Tulkki, et al., Phys. Rev. A 50, 1218 (1994).

    Article  ADS  Google Scholar 

  28. C. N. Liu and A. F. Starace, Phys. Rev. A 59, R1731 (1999).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © Ph.V. Demekhin, I.D. Petrov, B.M. Lagutin, V.L. Sukhorukov, A. Neogi, P. Yeates, E.T. Kennedy, M.W.D. Mansfield, J.T. Costello, 2007, published in Optika i Spektroskopiya, 2007, Vol. 102, No. 2, pp. 181–191.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demekhin, P.V., Petrov, I.D., Lagutin, B.M. et al. Theoretical study of photoionization of the isoelectronic sequence Rb+, Sr2+, and Y3+ . Opt. Spectrosc. 102, 149–158 (2007). https://doi.org/10.1134/S0030400X07020014

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X07020014

PACS numbers

Navigation