Skip to main content
Log in

Surface Modification of Absorbable Magnesium Stents by Reactive Ion Etching

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The surface texture and chemistry of WE43 absorbable magnesium stents (AMS) and tube specimens processed by chemical and reactive ion etching (RIE) were investigated. Tube specimens were produced in three different conditions, namely as-received, chemically etched and plasma etched. The results of scanning electron microscopy, atomic force microscopy and energy dispersive X-ray spectroscopy studies showed that plasma etching and cleaning reduced surface roughness by 10 % compared to chemical etching alone, and completely removed surface deposits remaining from the chemical etch process. The same combination of chemical and plasma etching processes was employed to produce AMS. Expansion tests demonstrated uniform stent expansion characteristics and confirmed the viability of the device. The results of this study show that RIE is an effective surface modification technique for absorbable magnesium devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Cotter JJ, Maguire P, Soberon F et al (2011) Disinfection of meticillin-resistant Staphylococcus aureus and Staphylococcus epidermidis biofilms using a remote non-thermal gas plasma. J Hosp Infect 78:204–207

    Article  CAS  Google Scholar 

  2. Yang J, Cui F, Lee IS, Wang X (2010) Plasma surface modification of magnesium alloy for biomedical application. Surf Coat Technol 205:S182–S187

    Article  CAS  Google Scholar 

  3. Cvelbar U, Vujoševič D, Vratnica Z, Mozetič M (2006) The influence of substrate material on bacteria sterilization in an oxygen plasma glow discharge. J Phys D Appl Phys 39:3487–3493

    Article  CAS  Google Scholar 

  4. Halfmann H, Bibinov N, Wunderlich J, Awakowicz P (2007) A double inductively coupled plasma for sterilization of medical devices. J Phys D Appl Phys 40:4145–4154

    Article  CAS  Google Scholar 

  5. Moreira AJ, Mansano RD, Andreoli Pinto TDJ et al (2004) Sterilization by oxygen plasma. Appl Surf Sci 235:151–155

    Article  CAS  Google Scholar 

  6. Serruys PW (2006) Fourth annual American College of Cardiology international lecture: a journey in the interventional field. J Am Coll Cardiol 47:1754–1768

    Article  Google Scholar 

  7. Lally C, Kelly DJ, Prendergast PJ (2006). Stents. Wiley Encyclopedia of Biomedical Engineering. doi: 10.1002/9780471740360.ebs1142

  8. Serruys PW, Ormiston JA, Onuma Y et al (2009) A bioabsorbable everolimus–eluting coronary stent system (ABSORB): 2-year outcomes and results from multiple imaging methods. Lancet 373:897–910

    Article  CAS  Google Scholar 

  9. Erne P, Schier M, Resink TJ (2006) The road to bioabsorbable stents: reaching clinical reality? Cardiovasc Intervent Radiol 29:11–16

    Article  Google Scholar 

  10. Stack RE, Califf RM, Phillips HR (1988) Interventional cardiac catheterization at Duke Medical Center. Am J Cardiol 62:3F–24F

    Article  CAS  Google Scholar 

  11. Tamai H, Igaki K, Kyo E et al (2000) Initial and 6-month results of biodegradable poly-l-lactid acid coronary sents in humans. J Am Heart Assoc 102:399–404

    CAS  Google Scholar 

  12. Peuster M, Wohlsein P, Brugmann M et al (2001) A novel approach to temporary stenting: degradable cardiovascular stents produced from corrodible metal-results 6–18 months after implantation into New Zealand white rabbits. Heart (Br Card Soc) 86:563–569

    Article  CAS  Google Scholar 

  13. Peuster M, Hesse C, Schloo T et al (2006) Long-term biocompatibility of a corrodible peripheral iron stent in the porcine descending aorta. Biomaterials 27:4955–4962

    Article  CAS  Google Scholar 

  14. Heublein B, Rohde R, Kaese V et al (2003) Biocorrosion of magnesium alloys: a new principle in cardiovascular implant technology? Heart 89:651–656

    Article  CAS  Google Scholar 

  15. Di Mario C, Griffiths H, Goktekin O et al (2004) Drug-eluting bioabsorbable magnesium stent. J Interv Cardiol 17:391–395

    Article  Google Scholar 

  16. Peeters P, Bosiers M, Verbist J et al (2005) Preliminary results after application of absorbable metal stents in patients with critical limb ischemia. J Endovasc Ther 12:1–5

    Article  Google Scholar 

  17. Hermawan H, Alamdari H, Mantovani D, Dubé D (2008) Iron–manganese: new class of metallic degradable biomaterials prepared by powder metallurgy. Powder Metall 51:38–45

    Article  CAS  Google Scholar 

  18. Hassel T, Bach FW, Golovko AN (2006) Production and properties of small tubes made from MgCa0.8 for application as stent in biomedical science. In: Kainer KU (ed) 7th international conference on magnesium alloys and their applications. Wiley-VCH, Dresden

    Google Scholar 

  19. Demir AG, Previtali B, Colombo D et al (2012) Fiber laser micromachining of magnesium alloy tubes for biocompatible and biodegradable cardiovascular stents. In: Proceedings of the SPIE, vol 8237

  20. Wu W, Chen S, Gastaldi D, Petrini L (2012) Experimental data confirm numerical modeling on degradation process of magnesium alloys stents. Acta Biomater (in press)

  21. Waksman R, Erbel R, Di Mario C et al (2009) Early- and long-term intravascular ultrasound and angiographic findings after bioabsorbable magnesium stent implantation in human coronary arteries. JACC Cardiovasc Interv 2:312–320

    Article  Google Scholar 

  22. Erbel R, Di Mario C, Bartunek J et al (2007) Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: a prospective, non-randomised multicentre trial. Lancet 369:1869–1875

    Article  CAS  Google Scholar 

  23. Haude M, Erbel R, Erne P et al (2013) Safety and performance of the drug-eluting absorbable metal scaffold (DREAMS) in patients with de-novo coronary lesions: 12 month results of the prospective, multicentre, first-in-man BIOSOLVE-I trial. Lancet 6736:1–9

    Google Scholar 

  24. Bosiers M, Deloose K, Verbist J, Peeters P (2005) First clinical application of absorbable metal stents in the treatment of critical limb ischemia: 12-month results. Vasc Dis Manag 2:86–91

    Google Scholar 

  25. Bosiers M, Peeters P, D’Archambeau O et al (2009) AMS INSIGHT—absorbable metal stent implantation for treatment of below-the-knee critical limb ischemia: 6-month analysis. Cardiovasc Interv Radiol 32:424–435

    Article  Google Scholar 

  26. Ramsden JJ, Allen DM, Stephenson DJ et al (2007) The design and manufacture of biomedical surfs. CIRP Ann Manuf Technol 56:687–711

    Article  Google Scholar 

  27. Hoche H, Scheerer H, Probst D et al (2003) Development of a plasma surface treatment for magnesium alloys to ensure sufficient wear and corrosion resistance. Surf Coat Technol 175:1018–1023

    Article  Google Scholar 

  28. Tian XB, Wei CB, Yang SQ et al (2005) Corrosion resistance improvement of magnesium alloy using nitrogen plasma ion implantation. Surf Coat Technol 198:454–458

    Article  CAS  Google Scholar 

  29. Wan GJ, Maitz MF, Sun H et al (2007) Corrosion properties of oxygen plasma immersion ion implantation treated magnesium. Surf Coat Technol 201:8267–8272

    Article  CAS  Google Scholar 

  30. Zhao Y, Wu G, Pan H et al (2012) Formation and electrochemical behavior of Al and O plasma-implanted biodegradable Mg–Y–RE alloy. Mater Chem Phys 132:187–191

    Article  CAS  Google Scholar 

  31. Morshed MM, Alam MM, Daniels SM (2011) Moisture removal from natural jute fibre by plasma drying process. Plasma Chem Plasma Process 32:249–258

    Article  Google Scholar 

  32. Migliavacca F, Petrini L, Montanari V et al (2005) A predictive study of the mechanical behaviour of coronary stents by computer modelling. Med Eng Phys 27:13–18

    Article  Google Scholar 

  33. Abderrazak K, Kriaa W, Ben Salem W et al (2009) Numerical and experimental studies of molten pool formation during an interaction of a pulse laser (Nd:YAG) with a magnesium alloy. Opt Laser Technol 41:470–480

    Article  CAS  Google Scholar 

  34. Gray-Munro JE, Seguin C, Strong M (2009) Influence of surface modification on the in vitro corrosion rate of magnesium alloy AZ31. J Biomed Mater Res Part A 91:221–230

    Article  Google Scholar 

  35. Nishimoto KT (2003) A study of plasma etching for use in active metals. MSc. thesis, Massachusetts Institute of Technology

  36. Kim G-H, Kim C-I (2007) Dry etching of magnesium oxide thin films by using inductively coupled plasma for buffer layer of MFIS structure. Thin Solid Films 515:4955–4959

    Article  CAS  Google Scholar 

  37. Hänzi AC, Gunde P, Schinhammer M, Uggowitzer PJ (2009) On the biodegradation performance of an Mg–Y–RE alloy with various surface conditions in simulated body fluid. Acta Biomater 5:162–171

    Article  Google Scholar 

  38. Lu P, Cao L, Liu Y et al (2011) Evaluation of magnesium ions release, biocorrosion, and hemocompatibility of MAO/PLLA-modified magnesium alloy WE42. J Biomed Mater Res Part B 96:101–109

    Google Scholar 

  39. Seeger JM, Ingegno MD, Bigatan E et al (1995) Hydrophilic surface modification of metallic endoluminal stents. J Vasc Surg 22:327–336

    Article  CAS  Google Scholar 

  40. Gu XN, Zheng YF (2010) A review on magnesium alloys as biodegradable materials. Front Mater Sci China 4:111–115

    Article  Google Scholar 

  41. Yang J, Cui F, Lee IS (2011) Surface modifications of magnesium alloys for biomedical applications. Ann Biomed Eng 39:1857–1871

    Article  Google Scholar 

  42. Gill P (2012) Corrosionand biocompatibility assessment of magnesium alloys. J Biomater Nanobiotechnol 03:10–13

    Article  CAS  Google Scholar 

  43. Yi CH, Jeong CH, Lee YH et al (2004) Oxide surface cleaning by an atmospheric pressure plasma. Surf Coat Technol 177–178:711–715

    Article  Google Scholar 

  44. Nakamura Y, Suzuki Y, Watanabe Y (1996) Effect of oxygen plasma etching on adhesion between polyimide films and metal. Thin Solid Films 290–291:367–369

    Article  Google Scholar 

  45. Walter R, Kannan MB (2010) Influence of surface roughness on the corrosion behaviour of magnesium alloy. Mater Des 32:2350–2354

    Article  Google Scholar 

  46. Kiousis DE, Wulff AR, Holzapfel GA (2009) Experimental studies and numerical analysis of the inflation and interaction of vascular balloon catheter–stent systems. Ann Biomed Eng 37:315–330

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the provision of project funding by an IRCSET fellowship under the Embark Initiative (RS/2006/82).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Galvin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galvin, E., Morshed, M.M., Cummins, C. et al. Surface Modification of Absorbable Magnesium Stents by Reactive Ion Etching. Plasma Chem Plasma Process 33, 1137–1152 (2013). https://doi.org/10.1007/s11090-013-9477-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-013-9477-1

Keywords

Navigation