Skip to main content
Log in

Spectroscopic evaluation of electron density and temperature of a laser plasma source in the vacuum ultraviolet

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

A time-integrated space-resolved emission spectroscopic technique was developed in the VUV spectral range for the measurement of the electron number density and excitation temperature of laser-produced steel plasmas. 400 mJ pulses of Nd:YAG laser (7 ns duration) emitted at the fundamental wavelength of 1.06 μm are used to create the steel plasmas under moderate vacuum conditions (∼ 0.2 mbar). The electron number density was estimated from measurements of the FWHM of the Stark-broadened C II 68.73nm carbon spectral line. The excitation temperature was evaluated by the Boltzmann’s plot method for five selected Fe III iron spectral lines in the wavelength range 89-93nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.B.L. Blankenburg, Laser Micro-Analysis (Wiley, New York, 1989).

  2. M.A. Khater et al., J. Phys. D: Appl. Phys. 33, 2252 (2000).

    Article  ADS  Google Scholar 

  3. E. Tognoni et al., Spectrochim. Acta B 65, 1 (2010).

    Article  ADS  Google Scholar 

  4. D.B. Chrisey, G.K. Hubler (Editors), Pulsed Laser Deposition of Thin Films (Wiley, New York, 1994).

  5. D.H. O’Neil et al., Mater. Chem. Phys. 123, 152 (2010).

    Article  Google Scholar 

  6. H. Long et al., Thin Solid Films 517, 745 (2008).

    Article  ADS  Google Scholar 

  7. V.M. Allmen, A. Blatter, Laser Beam Interactions with Materials: Physical Principles and Applications (Springer, Berlin, 1995).

  8. P. Jafarkhani et al., Appl. Surf. Sci. 256, 3817 (2010).

    Article  ADS  Google Scholar 

  9. D.S. Milovanović et al., J. All. Comp. 501, 89 (2010).

    Article  Google Scholar 

  10. H.R. Griem, Spectral Line Broadening by Plasmas (Academic Press, New York, 1974).

  11. H.R. Griem, Principles of Plasma Spectroscopy (Cambridge University Press, Cambridge, 1997).

  12. C. Aragón, J.A. Aguilera, Spectrochim. Acta B 63, 893 (2008).

    Article  ADS  Google Scholar 

  13. J. Hermann et al., J. Appl. Phys. 77, 2928 (1995).

    Article  ADS  Google Scholar 

  14. J.A. Aguilera, C. Aragon, Spectrochim. Acta B 59, 1861 (2004).

    Article  ADS  Google Scholar 

  15. W.F. Luo et al., Nucl. Instrum. Methods A 637, 158 (2011).

    Article  ADS  Google Scholar 

  16. J. Bengoechea, E.T. Kennedy, J. Anal. At. Spectrom. 19, 468 (2004).

    Article  Google Scholar 

  17. J. Jasik et al., Spectrochim. Acta B 64, 1128 (2009).

    Article  ADS  Google Scholar 

  18. M.A. Khater et al., Appl. Spectrosc. 55, 1430 (2001).

    Article  ADS  Google Scholar 

  19. M.A. Khater et al., Appl. Spectrosc. 56, 970 (2002).

    Article  ADS  Google Scholar 

  20. M.A. Khater, J. Korean Phys. Soc. 58, 1581 (2011) DOI:10.3938/jkps.58.1581.

    Article  Google Scholar 

  21. R.A. Multari et al., Appl. Spectrosc. 50, 1483 (1996).

    Article  ADS  Google Scholar 

  22. I.B. Gornushkin et al., Spectrochim. Acta B 54, 1207 (1999).

    Article  ADS  Google Scholar 

  23. G. Bekefi, Spectroscopic Diagnostics of Laser Plasmas, in Principles of Laser Plasmas (Wiley, New York, 1976).

  24. R.K. Singh, J. Narayan, Phys. Rev. B 41, 8843 (1990).

    Article  ADS  Google Scholar 

  25. H.R. Griem, Phys. Rev. 131, 1170 (1963).

    Article  ADS  Google Scholar 

  26. G. Cristoforetti et al., Spectrochim. Acta B 65, 86 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Khater.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khater, M.A., Kennedy, E.T. Spectroscopic evaluation of electron density and temperature of a laser plasma source in the vacuum ultraviolet. Eur. Phys. J. Plus 127, 61 (2012). https://doi.org/10.1140/epjp/i2012-12061-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2012-12061-7

Keywords

Navigation