Skip to main content
Log in

Optical diagnostics of laser-produced aluminium plasmas under water

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We report on the findings of double-pulse studies performed on an aluminium target submerged in water using Nd:YAG laser pulses. Shadowgraphy measurements were performed to examine the dynamic behaviour of the cavitation bubble that eventually forms some considerable time post-plasma ignition. These measurements were used to inform subsequent investigations designed to probe the bubble environment. The results of time-resolved imaging from within the cavitation bubble following irradiation by a second laser pulse reveal the full dynamic evolution of a plasma formed in such an environment. Rapid displacement of the plasma plume in a direction normal to the target surface followed by a diffusive outwards expansion is observed and a qualitative model is proposed to explain the observed behaviour. Line profiles of several ionic and atomic species were observed within the irradiated cavitation bubble. Electron densities were determined using the Stark broadening of the Al II line at 466.3 nm and electron temperatures inferred using the ratio of the Al II (466.3 nm) and Al I (396.15 nm) lines. Evidence of self-reversal of neutral emission lines was observed at times corresponding to growth and collapse phases of the cavitation bubble suggesting high population density for ground state atoms during these times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. V. Lazic, F. Colao, R. Fantoni, V. Spizzicchino, Spectrochim. Acta At. Spectrosc. 60, 1002 (2005)

    Article  ADS  Google Scholar 

  2. A. Assion, M. Wollenhaupt, L. Haag, F. Mayorov, C. Sarpe-Tudoran, M. Winter, U. Kutschera, T. Baumert, Appl. Phys. B Lasers Opt. 77, 391 (2003)

    Article  ADS  Google Scholar 

  3. A. Vogel, J. Acoust. Soc. Am. 100, 148 (1996)

    Article  ADS  Google Scholar 

  4. B. Thornton, T. Sakka, T. Takahashi, A. Tamura, T. Masamura, A. Matsumoto, Appl. Phys. Express 6, 82401 (2013)

    Article  Google Scholar 

  5. C. Fabre, M.-C. Boiron, J. Dubessy, M. Cathelineau, D.A. Banks, Chem. Geol. 182, 249 (2002)

    Article  Google Scholar 

  6. Z. Yan, D.B. Chrisey, J. Photochem. Photobiol. C Photochem. Rev. 13, 204 (2012)

    Article  Google Scholar 

  7. H. Zeng, X.-W. Du, S.C. Singh, S.A. Kulinich, S. Yang, J. He, W. Cai, Adv. Funct. Mater. 22, 1333 (2012)

    Article  Google Scholar 

  8. M. DellʼAglio, R. Gaudiuso, O. De Pascale, A. De Giacomo, Appl. Surf. Sci. 348, 4 (2015)

    Article  Google Scholar 

  9. V. Lazic, S. Jovićević, Spectrochim. Acta At. Spectrosc. 101, 288 (2014)

    Article  ADS  Google Scholar 

  10. T. Sakka, S. Iwanaga, Y.H. Ogata, A. Matsunawa, T. Takemoto, J. Chem. Phys. 112, 8645 (2000)

    Article  ADS  Google Scholar 

  11. M.R. Gavrilović, M. Cvejić, V. Lazic, S. Jovićević, Phys. Chem. Chem. Phys. 18, 14629 (2016)

    Article  Google Scholar 

  12. T. Sakka, H. Oguchi, S. Masai, K. Hirata, Y.H. Ogata, M. Saeki, H. Ohba, Appl. Phys. Lett. 88, 61120 (2006)

    Article  Google Scholar 

  13. A.E. Pichahchy, D.A. Cremers, M.J. Ferris, Spectrochim. Acta At. Spectrosc. 52, 25 (1997)

    Article  ADS  Google Scholar 

  14. V. Lazic, J.J. Laserna, S. Jovicevic, Spectrochim. Acta At. Spectrosc. 82, 42 (2013)

    Article  ADS  Google Scholar 

  15. V. Lazic, J.J. Laserna, S. Jovicevic, Spectrochim. Acta At. Spectrosc. 82, 50 (2013)

    Article  ADS  Google Scholar 

  16. A. Tamura, A. Matsumoto, K. Fukami, N. Nishi, T. Sakka, J. Appl. Phys. 117, 173304 (2015)

    Article  ADS  Google Scholar 

  17. G. Bekefi (ed.), Principles of laser plasmas (Wiley, New York, 1976)

    Google Scholar 

  18. G. Abdellatif, H. Imam, Spectrochim. Acta At. Spectrosc. 57, 1155 (2002)

    Article  ADS  Google Scholar 

  19. H.R. Griem, Principles of plasma spectroscopy (Cambridge University Press, New York, 1997)

    Book  Google Scholar 

  20. H. Luna, K.D. Kavanagh, J.T. Costello, J. Appl. Phys. 101, 33302 (2007)

    Article  Google Scholar 

  21. A.W. Allen, M. Blaha, W.W. Jones, A. Sanchez, H.R. Griem, Phys. Rev. A 11, 477 (1975)

    Article  ADS  Google Scholar 

  22. D.E. Kelleher, L.I. Podobedova, J. Phys. Chem. Ref. Data 37, 709 (2008)

    Article  ADS  Google Scholar 

  23. A. Herrera-Gómez, A. Hegedus, P.L. Meissner, Appl. Phys. Lett. 81, 1014 (2002)

    Article  ADS  Google Scholar 

  24. R.W.P. McWhirter, Plasma diagnostic techniques (Academic Press Inc., New York, 1965)

    Google Scholar 

  25. W. Lauterborn, Cavitation and inhomogeneities in underwater acoustics proceedings of the First international conference, Göttingen, Fed. Rep. of Germany, July 9–11, 1979 (Springer Berlin Heidelberg, Berlin, Heidelberg, 1980)

  26. T.T.P. Nguyen, Dynamics of under-liquid laser-induced shock process studied by time-resolved photoelasticity imaging technique (Doctoral dissertation, Nagaoka University of Technology, Nagaoka, Japan, 2013)

  27. A. Tamura, A. Matsumoto, T. Nakajima, K. Fukami, Y.H. Ogata, N. Nishi, T. Sakka, J. Appl. Phys. 117, 23302 (2015)

    Article  Google Scholar 

  28. T.T.P. Nguyen, R. Tanabe, Y. Ito, Appl. Phys. A 116, 1109 (2014)

    Article  ADS  Google Scholar 

  29. P. Giovanneschi, D. Dufresne, J. Appl. Phys. 58, 651 (1985)

    Article  ADS  Google Scholar 

  30. A. Prosperetti, L.A. Crum, K.W. Commander, J. Acoust. Soc. Am. 83, 502 (1988)

    Article  ADS  Google Scholar 

  31. R. Löfstedt, B.P. Barber, S.J. Putterman, Phys. Fluids Fluid Dyn. 5, 2911 (1993)

    Article  ADS  Google Scholar 

  32. A. Casavola, A. De Giacomo, M. Dell’Aglio, F. Taccogna, G. Colonna, O. De Pascale, S. Longo, Spectrochim. Acta At. Spectrosc. 60, 975 (2005)

    Article  ADS  Google Scholar 

  33. A. De Giacomo, M. Dell’Aglio, A. Santagata, R. Gaudiuso, O. De Pascale, P. Wagener, G.C. Messina, G. Compagnini, S. Barcikowski, Phys. Chem. Chem. Phys. 15, 3083 (2013)

    Article  Google Scholar 

  34. R. Fabbro, J. Fournier, P. Ballard, D. Devaux, J. Virmont, J. Appl. Phys. 68, 775 (1990)

    Article  ADS  Google Scholar 

  35. L. Berthe, R. Fabbro, P. Peyre, E. Bartnicki, J. Appl. Phys. 85, 7552 (1999)

    Article  ADS  Google Scholar 

  36. A. De Giacomo, M. Dell’Aglio, O. De Pascale, M. Capitelli, Spectrochim. Acta At. Spectrosc. 62, 721 (2007)

    Article  ADS  Google Scholar 

  37. A. Misra, R.K. Thareja, I.E.E.E. Trans, Plasma Sci. 27, 1553 (1999)

    Article  Google Scholar 

  38. S.S. Harilal, C.V. Bindhu, M.S. Tillack, F. Najmabadi, A.C. Gaeris, J. Appl. Phys. 93, 2380 (2003)

    Article  ADS  Google Scholar 

  39. S.S. Harilal, C.V. Bindhu, M.S. Tillack, F. Najmabadi, A.C. Gaeris, J. Phys. Appl. Phys. 35, 2935 (2002)

    Article  Google Scholar 

  40. C.G. Parigger, Spectral Line Shapes, ed by E. Oks, M.S. Pindzola. in Proceedings 18th International Conference on Spectral Line Shapes, AIP Conference Proceedings 874 (American Institute of Physics, New York, 2006), pp. 101

  41. H.R. Pakhal, R.P. Lucht, N.M. Laurendeau, Appl. Phys. B 90, 15 (2008)

    Article  ADS  Google Scholar 

  42. P. Hough, C. McLoughlin, T.J. Kelly, S.S. Harilal, J.P. Mosnier, J.T. Costello, Appl. Surf. Sci. 255, 5167 (2009)

    Article  ADS  Google Scholar 

  43. J.N. Leboeuf, K.R. Chen, J.M. Donato, D.B. Geohegan, C.L. Liu, A.A. Puretzky, R.F. Wood, Phys. Plasmas 3, 2203 (1996)

    Article  ADS  Google Scholar 

  44. S. Amoruso, J. Schou, J.G. Lunney, Europhys. Lett EPL 76, 436 (2006)

    Article  ADS  Google Scholar 

  45. J. Gonzalo, F. Vega, C.N. Afonso, J. Appl. Phys. 77, 6588 (1995)

    Article  ADS  Google Scholar 

  46. R.K. Singh, A. Kumar, B.G. Patel, K.P. Subramanian, J. Appl. Phys. 101, 103301 (2007)

    Article  ADS  Google Scholar 

  47. C. Colón, G. Hatem, E. Verdugo, P. Ruiz, J. Campos, J. Appl. Phys. 73, 4752 (1993)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was conducted under the framework of the Irish Government’s Programme for Research in Third Level Institutions Cycle 5, National Development Plan 2007–2013 with the assistance of the European Regional Development Fund and supported by Science Foundation Ireland (Grant Nos. 12/IA/1742 and 14/TIDA/2452) and the EU FP7 EMJD Programme ‘EXTATIC’ under the framework agreement FPA-2012-0033. This work is associated with the FP7 EU COST Action MP1208 and the U.S. National Science Foundation PIRE Grant No. 1243490.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Walsh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Walsh, N., Costello, J.T. & Kelly, T.J. Optical diagnostics of laser-produced aluminium plasmas under water. Appl. Phys. B 123, 179 (2017). https://doi.org/10.1007/s00340-017-6754-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-017-6754-3

Navigation