Near-threshold two-photon double ionization of Kr in the vacuum ultraviolet

Lazaros Varvarezos, Stefan Düsterer, Maksim D. Kiselev, Rebecca Boll, Cedric Bomme, Alberto De Fanis, Benjamin Erk, Christopher Passow, Sergei M. Burkov, Gregor Hartmann, Markus Ilchen, Per Johnsson, Thomas J. Kelly, Bastian Manschwetus, Tommaso Mazza, Michael Meyer, Dimitrios Rompotis, Oleg Zatsarinny, Elena V. Gryzlova, Alexei N. Grum-Grzhimailo, and John T. Costello
Phys. Rev. A 103, 022832 – Published 26 February 2021

Abstract

We report angle-resolved measurements on photoelectrons emitted upon near-threshold two-photon double ionization (TPDI) of Kr irradiated by free-electron laser (FEL) pulses. These photoelectron angular distributions (PADs) are compared with the results of semirelativistic R-matrix calculations. As reported by Augustin et al. [Phys. Rev. A 98, 033408 (2018)], it is found that the presence of autoionizing resonances within the bandwidth of the exciting FEL pulse strongly influences the PADs. In contrast to measurements on lower-Z targets such as Ne and Ar, the larger spin-orbit interaction, inherent in 4p-subshell hole states of Kr, permits us to resolve and study PADs associated with some of the fine-structure components of the Kr+ and Kr2+ ions.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 4 December 2020
  • Revised 7 February 2021
  • Accepted 10 February 2021

DOI:https://doi.org/10.1103/PhysRevA.103.022832

©2021 American Physical Society

Physics Subject Headings (PhySH)

Atomic, Molecular & Optical

Authors & Affiliations

Lazaros Varvarezos1, Stefan Düsterer2, Maksim D. Kiselev3,4,5, Rebecca Boll2,6, Cedric Bomme2,7, Alberto De Fanis6, Benjamin Erk2, Christopher Passow2, Sergei M. Burkov5, Gregor Hartmann2,8,9, Markus Ilchen9,6, Per Johnsson10, Thomas J. Kelly11, Bastian Manschwetus2, Tommaso Mazza6, Michael Meyer6, Dimitrios Rompotis6,2, Oleg Zatsarinny12, Elena V. Gryzlova3, Alexei N. Grum-Grzhimailo3, and John T. Costello1

  • 1School of Physical Sciences and National Centre for Plasma Science and Technology, Dublin City University, Dublin 9, Ireland
  • 2Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, D-22607 Hamburg, Germany
  • 3Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow 119991, Russia
  • 4Lomonosov Moscow State University, Faculty of Physics, 119991 Moscow Russia
  • 5Pacific National University, Tihookeanskaya Str., 139, Khabarovsk 680035, Russia
  • 6European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
  • 7Institut rayonnement-matiere de Saclay (Iramis), CEA Saclay Bat 524, Gif-sur-Yvette cedex, F-91191, France
  • 8Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Straße 15, D-12489 Berlin, Germany
  • 9Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
  • 10Department of Physics, Lund University, PO Box 118, SE-221 00 Lund, Sweden
  • 11Department of Computer Science and Applied Physics, Galway-Mayo Institute of Technology, Galway Campus, T91 T8NW Galway, Ireland
  • 12Department of Physics and Astronomy, Drake University, Des Moines, Iowa 50311, USA

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 103, Iss. 2 — February 2021

Reuse & Permissions
Access Options

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review A

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×