Skip to main content
Log in

Monitoring of stress reduction in shallow trench isolation CMOS structures via synchrotron X-ray topography, electrical data and raman spectroscopy

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Local oxidation of silicon (LOCOS) isolation technology is becoming increasingly unusable for critical dimensions of 0.25 μm and below, due to the intolerably large dimension of the oxide “bird'sbeak”. Therefore, this technique has been replaced by a process called shallow trench isolation (STI) which uses deposited dielectrics to fill trenches etched in the silicon between the active areas. One of the chief drawbacks to STI is the tendency of such structures to be highly stressed, especially after the oxide/dielectric backfill, which can have a deleterious impact on the electrical performance of fabricated devices. It is essential to monitor the stress/strain fields generated by shallow trench isolation structures. Synchrotron X-ray topography (SXRT), a genuinely non-destructive technique, has been employed to provide in situ stress evaluation during the development of an STI-based complimentary metal oxide semiconductor (CMOS) integrated circuit process. Various process options were evaluated and the data was compared with electrical n+/p diode leakage and micro-Raman spectroscopy data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Nag and A. Chatterjee, Solid State Technol. 40 (1997) 129.

    Google Scholar 

  2. A. Chaterjee, I. Ali, K. Joyner, D. Mercer, J. Kuehne, M. Mason, A. Esquivel, D. Rogers, S. O'Brien, P. Mei, S. Murtaza, S. P. Kwok, K. Taylor, S. Nag, G. Hames, M. Hanratty, H. Marchman, S. Ashburn and I. C. Chen, J. Vac. Sci. Technol. B 15 (1997) 1936.

    Google Scholar 

  3. J. M. Boyd and J. P. Ellul, J. Electrochem. Soc. 144 (1997) 1838.

    Google Scholar 

  4. P. M. Fahey, S. R. Mader, S. R. Stiffler, R. L. Moher, J. D. Mis and J. A. Slinkman, IBM. J. Res. Dev. 36 (1992) 158.

    Google Scholar 

  5. T. Tuomi, K. Naukkarinen and P. Rabe, Phys. Status Solidi A 25 (1974) 93.

    Google Scholar 

  6. B. K. Tanner, J. Electrochem. Soc. 136 (1989) 3438.

    Google Scholar 

  7. A. Zarka, Scanning Microscopy Supplement 7 (1993) 221.

    Google Scholar 

  8. M. Hart, J. Appl. Crystallogr. 8 (1975) 436.

    Google Scholar 

  9. D. V. Novikov, M. Ohler, R. KÖhler and G. Materlik, J. Phys. D: Appl. Phys. 28 (1995) A84.

    Google Scholar 

  10. D. K. Bowen and B. K. Tanner, “High Resolution X-Ray Diffractometry and Topography” (Taylor & Francis, 1998).

  11. G. H. SchwÜttke, J. Appl. Phys. 36 (1965) 2712.

    Google Scholar 

  12. I. A. Blech and E. S. Meiran, ibid. 38 (1967) 2913.

    Google Scholar 

  13. A. Authier, in “X-Ray and Neutron Dynamical Diffraction: Theory and Applications”, edited by A. Authier, S. Lagomarsino and B. K. Tanner (Plenum, 1996).

  14. C. L. Huang, H. R. Soleimani, G. J. Grula, J. W. Sleight, A. Villani, H. Ali and D. M. Antoniadis, IEEE Trans. Electron Devices 44 (1997) 646.

    Google Scholar 

  15. J. A. King, “Materials Handbook for Hybrid Microelectronics”, (Artech House, USA, 1988).

    Google Scholar 

  16. T. Tuomi, S. Hahn, M. Tilli, C. C. D. Wong and O. Borland, Mater Res. Soc. Symp. Proc. 71 (1986) 47.

    Google Scholar 

  17. I. Dewolf, Semicond. Sci. Technol. 11 (1996) 139.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mcnally, P.J., Curley, J.W., Bolt, M. et al. Monitoring of stress reduction in shallow trench isolation CMOS structures via synchrotron X-ray topography, electrical data and raman spectroscopy. Journal of Materials Science: Materials in Electronics 10, 351–358 (1999). https://doi.org/10.1023/A:1008993322697

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008993322697

Keywords

Navigation