Skip to main content
Log in

Microstructure and morphological study of ball-milled metal matrix nanocomposites

  • Structure, Phase Transformations, and Diffusion
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Due to the difficulty of preparation and beneficial properties achievable, copper and iron matrix nanocomposites are materials for which fabrication via the powder metallurgy route is attracting increasing research interest. The presence of ceramic nanoparticles in their matrix can lead to considerable changes in the microstructure and morphology. The effects of the type of metallic matrix and ceramic nanoparticle on the distribution of nano reinforcements and the morphology of ball-milled composite powders were evaluated in this study. For this purpose, 25 wt % of Al2O3 and SiC nanoparticles were separately ball-milled in the presence of iron and copper metals. The SEM, FESEM, and XRD results indicated that as-received nanoparticles, which were agglomerated before milling, were partially separated and embedded in the matrix of both the metals after the initial stages of ball milling, while prolonged milling was not found to further affect the distribution of nanoparticles. It was also observed that the Al2O3 phase was not thermodynamically stable during ball milling with copper powders. Finally, it was found that the presence of nanoparticles considerably reduce the average size of metallic powder particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Valibeygloo, R. A. Khosroshahi, and R. T. Mousavian, “Microstructural and mechanical properties of Al–4.5 wt % Cu reinforced with alumina nanoparticles by stir casting method,” Int. J. Miner., Metall., Mater., 20, 978–985 (2013).

    Article  Google Scholar 

  2. A. F. Boostani, S. Tahamtan, Z. Y. Jiang, D. Wei, S. Yazdani, R. A. Khosroshahi, R. T. Mousavian, J. Xu, X. Zhang, and D. Gong, “Enhanced tensile properties of aluminum matrix composites reinforced with graphene encapsulated SiC nanoparticles,” Composites Part A: Appl. Sci. Manufact., 68, 155–163 (2015).

    Article  Google Scholar 

  3. G. Mojtaba, M. S. Morteza, T. Majid, K. R. Jalal, and T. Reza, “Modification of stone matrix asphalt with nano-SiO2,” J. Basic Appl. Sci. Res. 2, 1338–1344 (2012).

    Google Scholar 

  4. A. F. Boostani, S. Yazdani, R. T. Mousavian, S. Tahamtan, R. A. Khosroshahi, and D. Wei, “Strengthening mechanisms of graphene sheets in aluminum matrix nanocomposites,” Mater. Design 88, 983–989 (2015).

    Article  Google Scholar 

  5. R. T. Mousavian, R. A. Khosroshahi, S. Yazdani, D. Brabazon, and A. F. Boostani, “Fabrication of aluminum matrix composites reinforced with nano- to micrometer-sized SiC particles,” Mater. Design 89, 58–70 (2016).

    Article  Google Scholar 

  6. D. Miracle, “Metal matrix composites–from science to technological significance,” Composites Sci. Technol. 65, 2526–2540 (2005).

    Article  Google Scholar 

  7. R. F. Gibson, “A review of recent research on mechanics of multifunctional composite materials and structures,” Compos. Struct. 92, 2793–2810 (2010).

    Article  Google Scholar 

  8. F. Toptan, A. Kilicarslan, A. Karaaslan, M. Cigdem, and I. Kerti, “Processing and microstructural characterisation of AA 1070 and AA 6063 matrix B4Cp reinforced composites,” Mater. Design 31, S87–S91 (2010).

    Article  Google Scholar 

  9. M. Forouzan, R. T. Mousavian, T. Sharif, and Y. Afkham, “A three-step synthesis process of submicron boron carbide powders using microwave energy,” J. Thermal Anal. Calorim. 122, 579–588, (2015).

    Article  Google Scholar 

  10. K. A. Nekouee, R. Khosroshahi, R. T. Mousavian, and N. Ehsani, “Sintering behavior and microwave dielectric properties of SiO2–MgO–Al2O3–TiO2 ceramics,” J. Mater. Sci.: Mater. Electron., 27, 3570–3575 (2016).

    Google Scholar 

  11. R. T. Mousavian, N. Azizi, Z. Jiang, and A. F. Boostani, “Effect of Fe2O3 as an accelerator on the reaction mechanism of Al–TiO2 nanothermite system,” J. Thermal Anal. Calorim. 117, 711–719 (2014).

    Article  Google Scholar 

  12. A. Mosleh, M. Ehteshamzadeh, and R. T. Mousavian, “Fabrication of an r-Al2Ti intermetallic matrix composite reinforced with a-Al2O3 ceramic by discontinuous mechanical milling for thermite reaction,” Int. J. Miner., Metall., Mater. 21, 1037–1043 (2014).

    Article  Google Scholar 

  13. R. T. Mousavian, S. Sharafi, and M. Shariat, “Preparation of nano-structural Al2O3–TiB2 in-situ composite using mechanically activated combustion synthesis followed byintensive milling,” Iran. J. Mater. Sci. Eng. 8, 1–9 (2011).

    Google Scholar 

  14. R. T. Mousavian, S. Sharafi, M. Roshan, and M. Shariat, “Effect of mechanical activation of reagents’ mixture on the high-temperature synthesis of Al2O3–TiB2 composite powder,” J. Therm. Anal. Calor. 104, 1063–1070 (2011).

    Article  Google Scholar 

  15. R. T. Mousavian, S. Sharafi, and M. Shariat, “Microwave- assisted combustion synthesis in a mechanically activated Al–TiO2–H3BO3 system,” Int. J. Refract. Metals and Hard Mater. 29, 281–288 (2011).

    Article  Google Scholar 

  16. C. Suryanarayana, “Mechanical alloying and milling,” Progress Mater. Sci. 46, 1–184 (2001).

    Article  Google Scholar 

  17. S. Romankov, S. Komarov, E. Vdovichenko, Y. Hayasaka, N. Hayashi, S. Kaloshkin, and E. Kasai, “Fabrication of TiN coatings using mechanical milling techniques,” Int. J. Refract. Metals Hard Mater. 27, 492–497 (2009).

    Article  Google Scholar 

  18. M. Zawrah, H. A. Zayed, R. A. Essawy, A. H. Nassar, and M. A. Taha, “Preparation by mechanical alloying, characterization and sintering of Cu–20 wt % Al2O3 nanocomposites,” Mater. Design 46, 485–490 (2013).

    Article  Google Scholar 

  19. C. Suryanarayana and N. Al-Aqeeli, “Mechanically alloyed nanocomposites,” Progress Mater. Sci. 58, 383–502 (2013).

    Article  Google Scholar 

  20. S. Sulaiman, M. Sayuti, and R. Samin, “Mechanical properties of the as-cast quartz particulate reinforced LM6 alloy matrix composites,” J. Mater. Proc. Technol. 201, 731–735 (2008).

    Article  Google Scholar 

  21. A. Pramanik and G. Littlefair, “Fabrication of nanoparticle reinforced metal matrix composites,” Adv. Mater. Res. 651, 289–294 (2013).

    Article  Google Scholar 

  22. P. Mohanty, K. Mishra, R. Bosu, and P. Padhi, “Achieving uniform nanoparticle distributions of bulk Al/Al2O3 metal matrix nanocomposites,” Int. J. Nanomanufact. 10, 478–488 (2014).

    Article  Google Scholar 

  23. A. F. Boostani, Z. Y. Jiang, R. T. Mousavian, S. Tahamtan, S. Yazdani, R. A. Khosroshahi, J. Z. Xu, D. Gong, X. M. Zhang, and D. Wei, “Graphene sheets encapsulating SiC nanoparticles: A roadmap towards enhancing tensile ductility of metal matrix composites,” Mater. Sci. Eng., A 648, 92–103 (2015).

    Article  Google Scholar 

  24. A. F. Boostani, R. T. Mousavian, S. Tahamtan, S. Yazdani, R. A. Khosroshahi, D. Wei, J. Xu, X. Zhang, and Z.Y. Jiang, “Solvothermal-assisted graphene encapsulation of SiC nanoparticles: A new horizon toward toughening aluminum matrix nanocomposites,” Mater. Sci. Eng., A 653, 99–107 (2016).

    Article  Google Scholar 

  25. R. T. Mousavian, R. A. Khosroshahi, S. Yazdani, and D. Brabazon, “Manufacturing of cast A356 matrix composite reinforced with nano- to micrometer-sized SiC particles,” Rare Metals, 36, 46–54 (2017).

    Article  Google Scholar 

  26. S. Bernoosi, R. A. Khosroshahi, and R. T. Mousavian, “Mechanical properties of hot-pressed Al–4.5 wt % Cu/WC composite,” J.Ultrafine Grained and Nanostruct. Mater. 47, 63–70 (2014).

    Google Scholar 

  27. I. Ozdemir, S. Ahrens, S. Mücklich, and B. Wielage, “Nanocrystalline Al–Al2O3p and SiCp composites pro duced by high-energy ball milling,” J. Mater. Proc. Technol. 205, 111–118 (2008).

    Article  Google Scholar 

  28. S. R. Tousi, R. Y. Rad, E. Salahi, I. Mobasherpour, and M. Razavi, “Production of Al–20 wt % Al2O3 composite powder using high energy milling,” Powder Technol. 192, 346–351 (2009).

    Article  Google Scholar 

  29. M. Phasha, K. Maweja, and C. Babst, “Mechanical alloying by ball milling of Ti and Mg elemental powders: Operation condition considerations,” J. Alloys Compd. 492, 201–207 (2010).

    Article  Google Scholar 

  30. H. Zhou, L. Hu, H. Sun, and X. Chen, “Synthesis of nanocrystalline Mg-based Mg–Ti composite powders by mechanical milling,” Mater. Charact. 106, 44–51 (2015).

    Article  Google Scholar 

  31. M. Alizadeh and M. M. Aliabadi, “Synthesis behavior of nanocrystalline Al–Al2O3 composite during low time mechanical milling process,” J. Alloys Compd. 509, 4978–4986 (2011).

    Article  Google Scholar 

  32. H. Ahamed and V. Senthilkumar, “Role of nano-size reinforcement and milling on the synthesis of nanocrystalline aluminum alloy composites by mechanical alloying,” J. Alloys Compd. 505, 772–782 (2010).

    Article  Google Scholar 

  33. E. Salahi and A. Rajabi, “Fabrication and characterisation of copper–alumina nanocomposites prepared by high-energy fast milling,” Mater. Sci. Technol. 32, 1212–1217 (2016).

    Article  Google Scholar 

  34. M. Ramezani and T. Neitzert, “Mechanical milling of aluminum powder using planetary ball milling process,” J. Achiev. Mater. Manufact. Eng. 55, 790–798 (2012).

    Google Scholar 

  35. E. Nes, “Modelling of work hardening and stress saturation in fcc metals,” Prog. Mater. Sci. 41, 129–193 (1997).

    Article  Google Scholar 

  36. S. Yi, K. Trumble, and D. Gaskell, “Thermodynamic analysis of aluminate stability in the eutectic bonding of copper with alumina,” Acta Mater. 47, 3221–3226 (1999).

    Article  Google Scholar 

  37. M. A. Meyers, A. Mishra, and D. J. Benson, “Mechanical properties of nanocrystalline materials,” Prog. Mater. Sci. 51, 427–556 (2006).

    Article  Google Scholar 

  38. M. A. Meyers and K. K. Chawla, Mechanical Behavior of Materials, (Cambr. Univ. Press, Cambridge, 2009), vol. 2.

    Google Scholar 

  39. P. le Brun, E. Gaffet, L. Froyen, and L. Delaey, “Structure and properties of Cu, Ni and Fe powders milled in a planetary ball mill,” Scr. Metall. Mater. 26, 1743–1748 (1992).

    Article  Google Scholar 

  40. F. Zhou, X. Liao, Y. Zhu, S. Dallek, and E. Lavernia, “Microstructural evolution during recovery and recrystallization of a nanocrystalline Al–Mg alloy prepared by cryogenic ball milling,” Acta Mater. 51, 2777–2791 (2003).

    Article  Google Scholar 

  41. D. Brabazon, D. Browne, and A. J. Carr, “Mechanical stir casting of aluminum alloys from the mushy state: Process, microstructure and mechanical properties,” Mater. Sci. Eng., A 326, 370–381 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Taherzadeh Mousavian.

Additional information

Published in Russian in Fizika Metallov i Metallovedenie, 2017, Vol. 118, No. 8, pp. 790–800.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afkham, Y., Khosroshahi, R.A., Kheirifard, R. et al. Microstructure and morphological study of ball-milled metal matrix nanocomposites. Phys. Metals Metallogr. 118, 749–758 (2017). https://doi.org/10.1134/S0031918X17080026

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X17080026

Keywords

Navigation