Skip to main content

Advertisement

Log in

Manufacturing of cast A356 matrix composite reinforced with nano- to micrometer-sized SiC particles

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

In this study, large micron-sized SiC particles were fragmented via ball-milling process in the presence of iron and nickel powders, separately, to fabricate composite powders of Fe–SiC and Ni–SiC. Continuous fracturing of brittle SiC powders leads to the formation of multi-modal-sized SiC powders with size of from 50 nm to slightly higher than 10 µm after 36-h ball milling. The milled powders were then incorporated into the semisolid melt of A356 aluminum alloy to ease the incorporation of fine SiC particles by using iron and nickel as their carrier agents. The final as-cast composites were then extruded at 500 °C with a reduction ratio of 9:1. Lower-sized composite powders with slight agglomeration are obtained for the 36-h milled Ni–SiC mixture compared to that of Fe–SiC powders, leading to incorporation of SiC particles into the melt with a lower size and suitable distribution for the Ni–SiC mixture. It is found that lower-sized composite particles could release the fine SiC particles into the melt more easily, while large agglomerated composite particles almost remain in its initial form, resulting in sites of stress concentration and low-strength aluminum matrix composites. Ultimate tensile strength (UTS) and yield strength (YS) values of 243 and 135 MPa, respectively, are obtained for the aluminum matrix composite in which nickel acts as the carrier of fine ceramic particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Khosroshahi NB, Mousavian RT, Khosroshahi RA, Brabazon D. Mechanical properties of rolled A356 based composites reinforced by Cu-coated bimodal ceramic particles. Mater Des. 2015;83:678.

    Google Scholar 

  2. Soltani S, Khosroshahi RA, Mousavian RT, Jiang Z-Y, Boostani AF, Brabazon D. Stir casting process for manufacture of Al–SiC composites. Rare Met. 2015;. doi:10.1007/s12598-015-0565-7.

    Google Scholar 

  3. Mousavian RT, Damadi S, Khosroshahi RA, Brabazon D, Mohammadpour M. A comparison study of applying metallic coating on SiC particles for manufacturing of cast aluminum matrix composites. Int J Adv Manuf Technol. 2015;81:433.

    Article  Google Scholar 

  4. Mousavian RT, Khosroshahi RA, Yazdani S, Brabazon D, Boostani A. Fabrication of aluminum matrix composites reinforced with nano-to micrometer-sized SiC particles. Mater Des. 2016;89:58.

    Google Scholar 

  5. Boostani AF, Yazdani S, Mousavian RT, Tahamtan S, Khosroshahi RA, Wei D, Brabazon D, Xu JZ, Zhang XM, Jiang ZY. Strengthening mechanisms of graphene sheets in aluminium matrix nanocomposites. Mater Des. 2015;88:983.

    Google Scholar 

  6. Boostani AF, Mousavian RT, Tahamtan S, Yazdani S, Khosroshahi RA, Wei D, Xu JZ, Gong D, Zhang XM, Jiang ZY. Graphene sheets encapsulating SiC nanoparticles: a roadmap towards enhancing tensile ductility of metal matrix composites. Mater Sci Eng A. 2015;648:92.

    Article  Google Scholar 

  7. Vijayarangan S, Rajamanickam N, Sivananth V. Evaluation of metal matrix composite to replace spheroidal graphite iron for a critical component, steering knuckle. Mater Des. 2013;43:532.

    Article  Google Scholar 

  8. Tiruvenkadam N, Thyla P, Senthilkumar M, Bharathiraja M, Murugesan A. Synthesis of new aluminum nano hybrid composite liner for energy saving in diesel engines. Energy Convers Manag. 2015;98:440.

    Article  Google Scholar 

  9. Chandran P, Sirimuvva T, Nayan N, Shukla AK, Murty SVSN, Pramod SL, Sharma SC, Bakshi SR. Effect of carbon nanotube dispersion on mechanical properties of aluminum–silicon alloy matrix composites. J Mater Eng Perform. 2014;23(3):1028.

    Article  Google Scholar 

  10. Mohammadpour M, Khosroshahi RA, Mousavian RT, Brabazon D. Effect of interfacial-active elements addition on the incorporation of micron-sized SiC particles in molten pure aluminum. Ceram Int. 2014;40(6):8323.

    Article  Google Scholar 

  11. Valibeygloo N, Khosroshahi RA, Mousavian RT. Microstructural and mechanical properties of Al-4.5 wt% Cu reinforced with alumina nanoparticles by stir casting method. Int J Miner Metall Mater. 2013;20(10):978.

    Article  Google Scholar 

  12. Roshan M, Mousavian TR, Ebrahimkhani H, Mosleh A. Fabrication of Al-based composites reinforced with Al2O3–Tib2 ceramic composite particulates using vortex-casting method. J Min Metall Sect B. 2013;49(3):299.

    Article  Google Scholar 

  13. Khosroshahi NB, Khosroshahi RA, Mousavian RT, Brabazon D. Effect of electroless coating parameters and ceramic particle size on fabrication of a uniform Ni–P coating on SiC particles. Ceram Int. 2014;40(8):12149.

    Article  Google Scholar 

  14. Khosroshahi NB, Khosroshahi RA, Mousavian RT, Brabazon D. Electroless deposition (ED) of copper coating on micron-sized SiC particles. Surf Eng. 2014;30(10):747.

    Article  Google Scholar 

  15. Noori H, Mousavian RT, Khosroshahi RA, Brabazon D, Damadi SR. Effect of SiC particle morphology on Co–P electroless coating characteristics. Surf Eng. 2015. doi:10.1179/1743294415Y.0000000035.

    Google Scholar 

  16. Mohammadpour M, Khosroshahi RA, Mousavian RT, Brabazon D. A novel method for incorporation of micron-sized SiC particles into molten pure aluminum utilizing a Co coating. Metall Mater Trans B. 2015;46(1):12.

    Article  Google Scholar 

  17. Raju KSR, Raju VR, Raju PRM, Ghosal P. Launching particle to constant reinforcement ratio as a parameter for improving the nanoreinforcement distribution and tensile strength of aluminum nanometal matrix composites. In: Proceedings of International Conference on Advances in Design and Manufacturing. Tiruchirappalli, 2015.1.

  18. Raju KSR, Raju VR, Raju PRM, Ghosal P. Investigation of novel parameters affecting distribution of reinforcement in nano metal matrix composites. Int J Nanomanuf. 2015;11(1–2):94.

    Article  Google Scholar 

  19. Boostani AF, Tahamtan S, Jiang ZY, Wei D, Yazdani S, Khosroshahi RA, Mousavian RT, Xu J, Zhang X, Gong D. Enhanced tensile properties of aluminium matrix composites reinforced with graphene encapsulated SiC nanoparticles. Compos A. 2015;68(2):155.

    Article  Google Scholar 

  20. Su H, Gao WL, Zhang H, Liu HB, Lu J, Lu Z. Study on preparation of large sized nanoparticle reinforced aluminium matrix composite by solid-liquid mixed casting process. Mater Sci Technol. 2012;28(2):178.

    Article  Google Scholar 

  21. Xu J, Chen L, Choi H, Li X. Theoretical study and pathways for nanoparticle capture during solidification of metal melt. J Phys Condens Matter. 2012;24(25):255304.

    Article  Google Scholar 

  22. Xu J, Chen L, Choi H, Konish H, Li X. Assembly of metals and nanoparticles into novel nanocomposite superstructures. Sci Rep. 2013;3:1.

    Google Scholar 

  23. Xanthopoulou G, Marinou A, Vekinis G, Lekatou A, Vardavoulias M. Ni–Al and NiO–Al composite coatings by combustion-assisted flame spraying. Coatings. 2014;4(2):231.

    Article  Google Scholar 

  24. Lee J-M, Kang S-B, Sato T, Tezuka H, Kamio A. Evolution of iron aluminide in Al/Fe in situ composites fabricated by plasma synthesis method. Mater Sci Eng A. 2003;362(1):257.

    Article  Google Scholar 

  25. Rajan T, Pillai R, Pai B. Functionally graded Al–Al3Ni in situ intermetallic composites: fabrication and microstructural characterization. J Alloys Compd. 2008;453(1):L4.

    Article  Google Scholar 

  26. Rajan T, Pillai R, Pai B. Characterization of centrifugal cast functionally graded aluminum–silicon carbide metal matrix composites. Mater Charact. 2010;61(10):923.

    Article  Google Scholar 

  27. Rams J, Urena A, Escalera M, Sánchez M. Electroless nickel coated short carbon fibres in aluminium matrix composites. Compos A Appl Sci Manuf. 2007;38(2):566.

    Article  Google Scholar 

  28. Farkoosh A, Pekguleryuz M. The effects of manganese on the Τ-phase and creep resistance in Al–Si–Cu–Mg–Ni alloys. Mater Sci Eng A. 2013;582:248.

    Article  Google Scholar 

  29. Lee J-M, Kang S-B, Sato T, Tezuka H, Kamio A. Fabrication of Al/Al3Fe composites by plasma synthesis method. Mater Sci Eng A. 2003;343(1):199.

    Article  Google Scholar 

  30. Goulart PR, Lazarine VB, Leal CV, Spinelli JE, Cheung N, Garcia A. Investigation of intermetallics in hypoeutectic Al–Fe alloys by dissolution of the Al matrix. Intermetallics. 2009;17(9):753.

    Article  Google Scholar 

  31. Blundell D, Wai S. Measurement of van der Waal’s forces between iron/iron surfaces in water by atomic force microscopy. Microsc Microanal. 2005;11(S2):382.

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Iran National Science Foundation (No. 91002190).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rasoul Azari Khosroshahi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mousavian, R.T., Khosroshahi, R.A., Yazdani, S. et al. Manufacturing of cast A356 matrix composite reinforced with nano- to micrometer-sized SiC particles. Rare Met. 36, 46–54 (2017). https://doi.org/10.1007/s12598-015-0689-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-015-0689-9

Keywords

Navigation