Skip to main content

Advertisement

Log in

Low-Energy Plasma Spray (LEPS) Deposition of Hydroxyapatite/Poly-ε-Caprolactone Biocomposite Coatings

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Thermal spraying is widely employed to deposit hydroxyapatite (HA) and HA-based biocomposites on hip and dental implants. For thick HA coatings (>150 μm), problems are generally associated with the build-up of residual stresses and lack of control of coating crystallinity. HA/polymer composite coatings are especially interesting to improve the pure HA coatings' mechanical properties. For instance, the polymer may help in releasing the residual stresses in the thick HA coatings. In addition, the selection of a bioresorbable polymer may enhance the coatings' biological behavior. However, there are major challenges associated with spraying ceramic and polymeric materials together because of their very different thermal properties. In this study, pure HA and HA/poly-ε-caprolactone (PCL) thick coatings were deposited without significant thermal degradation by low-energy plasma spraying (LEPS). PCL has never been processed by thermal spraying, and its processing is a major achievement of this study. The influence of selected process parameters on microstructure, composition, and mechanical properties of HA and HA/PCL coatings was studied using statistical design of experiments (DOE). The HA deposition rate was significantly increased by the addition of PCL. The average porosity of biocomposite coatings was slightly increased, while retaining or even improving in some cases their fracture toughness and microhardness. Surface roughness of biocomposites was enhanced compared with HA pure coatings. Cell culture experiments showed that murine osteoblast-like cells attach and proliferate well on HA/PCL biocomposite deposits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. L. Sun, C.C. Berndt, K.A. Gross, and A. Kucuk, Material Fundamentals and Clinical Performance of Plasma-Sprayed Hydroxyapatite Coatings: A Review, J. Biomed. Mater. Res. B Appl. Biomater., 2001, 58(5), p 570-592

    Article  CAS  Google Scholar 

  2. R.B. Heimann, Plasma Spray Coating—Principles and Applications, 2nd ed., Wiley-VCH, Weinheim, 2008

    Google Scholar 

  3. K.A. Gross and C.C. Berndt, Thermal Processing of Hydroxyapatite for Coating Production, J. Biomed. Mater. Res. A, 1998, 39(4), p 580-587

    Article  CAS  Google Scholar 

  4. K. Khor, H. Li, and P. Cheang, Significance of Melt-Fraction in HVOF Sprayed Hydroxyapatite Particles, Splats and Coatings, Biomaterials, 2004, 25(7-8), p 1177-1186

    Article  CAS  Google Scholar 

  5. R. Gadow, A. Killinger, and N. Stiegler, Hydroxyapatite Coatings for Biomedical Applications Deposited by Different Thermal Spray Techniques, Surf. Coat. Technol., 2010, 205(4), p 1157-1164

    Article  CAS  Google Scholar 

  6. H.C. Gledhill, I.G. Turner, and C. Doyle, Direct Morphological Comparison of Vacuum Plasma Sprayed and Detonation Gun Sprayed Hydroxyapatite Coatings for Orthopaedic Applications, Biomaterials, 1999, 20(4), p 315-322

    Article  CAS  Google Scholar 

  7. Y. Borisov, S.G. Voynarovych, A.N. Kislitsa, A.L. Borisova, M.V. Karpetz, and A.Y. Tunik, Effect of Microplasma Spray Conditions on Structure, Phase Composition and Texture of Hydroxyapatite Coatings, Thermal Spray 2006: Building on 100 Years of Success, B. Marple, M. Hyland, Y. Lau, R. Lima, and J. Voyer, Ed., ASM International, Seattle, 2006, p 29-34

    Google Scholar 

  8. L. Zhao, K. Bobzin, F. Ernst, J. Zwick, and E. Lugscheider, Study on the Influence of Plasma Spray Processes and Spray Parameters on the Structure and Crystallinity of Hydroxylapatite Coatings, Mat-wiss u Werkstofftech, 2006, 37(6), p 516-520

    Article  CAS  Google Scholar 

  9. Y.C. Tsui, C. Doyle, and T.W. Clyne, Plasma Sprayed Hydroxyapatite Coatings on Titanium Substrates. Part 1. Mechanical Properties and Residual Stress Levels, Biomaterials, 1998, 19(22), p 2015-2029

    Article  CAS  Google Scholar 

  10. R.B. Heimann, Thermal Spraying of Biomaterials, Surf. Coat. Technol., 2006, 201, p 2012-2019

    Article  CAS  Google Scholar 

  11. S.W.K. Kweh, K. Khor, and P. Cheang, High Temperature In-Situ XRD of Plasma Sprayed HA Coatings, Biomaterials, 2002, 23(2), p 381-387

    Article  CAS  Google Scholar 

  12. L. Sun, C.C. Berndt, and C.P. Grey, Phase, Structural and Microstructural Investigations of Plasma Sprayed Hydroxyapatite Coatings, Mater. Sci. Eng. A, 2003, 360, p 70-84

    Article  Google Scholar 

  13. Y.C. Tsui, C. Doyle, and T.W. Clyne, Plasma Sprayed Hydroxyapatite Coatings on Titanium Substrates. Part 2. Optimisation of Coating Properties, Biomaterials, 1998, 19(22), p 2031-2043

    Article  CAS  Google Scholar 

  14. M.F. Morks and A. Kobayash, Effect of Gun Current on the Microstructure and Crystallinity of Plasma Sprayed Hydroxyapatite Coatings, Appl. Surf. Sci., 2007, 253, p 7136-7142

    Article  CAS  Google Scholar 

  15. A. Dey, A.K. Mukhopadhyay, S. Gangadharan, M.K. Sinha, and D. Basu, Characterization of Microplasma Sprayed Hydroxyapatite Coating, J. Therm. Spray Technol., 2009, 18(4), p 578-592

    Article  CAS  Google Scholar 

  16. P. Ducheyne, S. Radin, and L. King, The Effect of Calcium Phosphate Ceramic Composition and Structure on In Vitro Behavior. 1. Dissolution, J. Biomed. Mater. Res., 1993, 27(1), p 25-34

    Article  CAS  Google Scholar 

  17. W. Xue, S. Tao, X. Liu, X. Zheng, and C. Ding, In Vivo Evaluation of Plasma Sprayed Hydroxyapatite Coatings Having Different Crystallinity, Biomaterials, 2004, 25(3), p 415-421

    Article  CAS  Google Scholar 

  18. K.A. Gross, B. Ben-Nissan, W.R. Walsh, and E. Swarts, Analysis of Retrieved Hydroxyapatite Coated Orthopaedic Implants, Thermal Spray: Meeting the Challenges of the 21st Century, C. Coddet, Ed., ASM International, Nice, 1998, p 1133-1138

    Google Scholar 

  19. V. Sergo, O. Sbaizero, and D.R. Clarke, Mechanical and Chemical Consequences of the Residual Stresses in Plasma Sprayed Hydroxyapatite Coatings, Biomaterials, 1997, 18, p 477-482

    Article  CAS  Google Scholar 

  20. H. Li, K.A. Khor, and P. Cheang, Young’s Modulus and Fracture Toughness Determination of High Velocity Oxy-Fuel-Sprayed Bioceramic Coatings, Surf. Coat. Technnol., 2002, 155(1), p 21-32

    Article  CAS  Google Scholar 

  21. H. Li, K. Khor, and P. Cheang, Impact Formation and Microstructure Characterization of Thermal Sprayed Hydroxyapatite/Titania Composite Coatings, Biomaterials, 2003, 24(6), p 949-957

    Article  CAS  Google Scholar 

  22. L. Sun, C.C. Berndt, and K.A. Gross, Hydroxyapatite/Polymer Composite Flame-Sprayed Coatings for Orthopedic Applications, J. Biomater. Sci. Polym. Ed., 2002, 13(9), p 977-990

    Article  CAS  Google Scholar 

  23. V.J.P. Lim, K. Khor, L. Fu, and P. Cheang, Hydroxyapatite-Zirconia Composite Coatings via the Plasma Spraying Process, J. Mater. Process. Technol., 1999, 89-90(1-3), p 491-496

    Article  Google Scholar 

  24. K. Balani, R. Anderson, T. Laha, M. Andara, J. Tercero, E. Crumpler, and A. Agarwal, Plasma-Sprayed Carbon Nanotube Reinforced Hydroxyapatite Coatings and Their Interaction with Human Osteoblasts In Vitro, Biomaterials, 2007, 28(4), p 618-624

    Article  CAS  Google Scholar 

  25. S.V. Dorozhkin, Calcium Orthophosphate-Based Biocomposites and Hybrid Biomaterials, J. Mater. Sci., 2009, 44(9), p 2343-2387

    Article  CAS  Google Scholar 

  26. X. Wei, Ch. Gong, M. Gou, S. Fu, Q. Guo, S. Shi, F. Luo, G. Guo, L. Qiu, and Z. Qian, Biodegradable Poly(ε-caprolactone)-Poly(ethylene glycol) Copolymers as Drug Delivery System, Int. J. Pharm., 2009, 381(1), p 1-18

    Article  CAS  Google Scholar 

  27. S.V. Dorozhkin and T. Ajaal, Strengthening of Dense Bioceramic Samples Using Bioresorbable Polymers—A Statistical Approach, J. Biomimetics Biomater Tissue Eng., 2009, 4, p 27-39

    Article  CAS  Google Scholar 

  28. O. Persenaire, M. Alexandre, P. Degée, and P. Dubois, Mechanisms and Kinetics of Thermal Degradation of Poly(ε-caprolactone), Biomacromolecules, 2001, 2(1), p 288-294

    Article  CAS  Google Scholar 

  29. H.W. Kim, E.J. Lee, H.E. Kim, V. Salih, and J.C. Knowles, Effect of Fluoridation of Hydroxyapatite in Hydroxyapatite-Polycaprolactone Composites on Osteoblast Activity, Biomaterials, 2005, 26, p 4395-4404

    Article  CAS  Google Scholar 

  30. D. Verma, K. Katti, and D. Katti, Bioactivity in In Situ Hydroxyapatite/Polycaprolactone Composites, J. Biomed. Mater. Res. A, 2006, 78, p 772-780

    Google Scholar 

  31. S.I. Roohani-Esfahani, S. Nouri-Khorasani, Z. Lu, R. Appleyard, and H. Zreiqat, The Influence Hydroxyapatite Nanoparticle Shape and Size on the Properties of Biphasic Calcium Phosphate Scaffolds Coated with Hydroxyapatite-PCL Composites, Biomaterials, 2010, 31, p 5498-5509

    Article  CAS  Google Scholar 

  32. H.W. Kim, J.C. Knowles, and H.E. Kim, Hydroxyapatite/Poly(ε-caprolactone) Composite Coatings on Hydroxyapatite Porous Bone Scaffold for Drug Delivery, Biomaterials, 2004, 25, p 1279-1287

    Article  CAS  Google Scholar 

  33. C.P.A.T. Klein, J.G.C. Wolke, and K. de Groot, Stability of Calcium Phosphate Ceramics and Plasma Sprayed Coatings, An Introduction to Bioceramics, 1st ed., L.L. Hench and J. Wilson, Ed., World Scientific, Singapore, 1993, p 199-221

    Google Scholar 

  34. D. Garcia-Alonso, “Plasma Spray Deposition of Hydroxyapatite Based Composites as a Step Towards Bone Scaffolds,” Ph.D. thesis, Dublin City University, Dublin, Ireland, 2009. Available from: http://doras.dcu.ie

  35. S. Hasan and J. Stokes, Design of Experiment Analysis of the Sulzer Metco DJ High Velocity Oxy-Fuel Coating of Hydroxyapatite for Orthopedic Applications, J. Therm. Spray Technol., 2011, 20(1-2), p 186-194

    Article  CAS  Google Scholar 

  36. S. Kehoe and J. Stokes, Box-Behnken Design of Experiments Investigation of Hydroxyapatite Synthesis for Orthopedic Applications, J. Mater. Eng. Perform., 2011, 20, p 306-316

    Article  CAS  Google Scholar 

  37. A. Baji, S.C. Wong, T. Liu, and T.S. Strivatsan, Morphological and X-ray Diffraction Studies of Crystalline Hydroxyapatite-Reinforced Polycaprolactone, J. Biomed. Mater. Res. B Appl. Biomater., 2007, 81(2), p 343-350

    Google Scholar 

  38. Z. Mohammadi, A.A. Ziaei-Moayyed, and A.S.M. Mesgar, Adhesive and Cohesive Properties by Indentation Method of Plasma-Sprayed Hydroxyapatite Coatings, Appl. Surf. Sci., 2007, 253(11), p 4960-4965

    Article  CAS  Google Scholar 

  39. G. Bolelli, L. Lusvarghi, T. Manfredini, and F.P. Mantini, Mantini, Comparison Between Plasma- and HVOF-Sprayed Ceramic Coatings. Part I. Microstructure and Mechanical Properties, Int. J. Surf. Sci. Eng., 2007, 1(1), p 38-61

    Article  CAS  Google Scholar 

  40. H. Du, S. Lee, and J. Shin, Study on Porosity of Plasma-Sprayed Coatings by Digital Image Analysis Method, J. Therm. Spray Technol., 2005, 14(4), p 453-461

    Article  CAS  Google Scholar 

  41. N.E. Vrana, A. O’Grady, E. Kay, P.A. Cahill, and G.B. McGuinness, Cell Encapsulation within PVA-Based Hydrogels via Freeze-Thawing: A One-Step Scaffold Formation and Cell Storage Technique, J. Tissue Eng. Regen. Med., 2009, 3(7), p 567-572

    Article  CAS  Google Scholar 

  42. NIST/SEMATECH e-Handbook of Statistical Methods, 2003. Available from: http://www.itl.nist.gov/div898/handbook/

  43. “Implants for Surgery—Hydroxyapatite. Part 2. Coatings of Hydroxyapatite”, ISO 13779-2:2000, International Organization for Standardization, USA, 2000

  44. “Implants for Surgery—Hydroxyapatite. Part 1. Ceramic Hydroxyapatite”, ISO 13779-1:2000, International Organization for Standardization, USA, 2000

  45. C.C. Berndt and K.A. Gross, Characteristics of Hydroxylapatite Biocoatings, Thermal Spray: International Advances in Coatings Technology, C.C. Berndt, Ed., ASM International, Orlando, FL, 1992, p 465-470

    Google Scholar 

  46. K. Khor and P. Cheang, Characterization of Plasma Sprayed Hydroxyapatite Powders and Coatings, Thermal Spray Coatings: Research, Design and Applications, C.C. Berndt and T.F. Bernecki, Ed., ASM International, Anaheim, CA, 1993, p 347-352

    Google Scholar 

  47. R.B. Heimannn, Better Quality Control: Stochastic Approaches to Optimize Properties and Performance of Plasma-Sprayed Coatings, J. Therm. Spray Technol., 2010, 19(4), p 765-778

    Article  Google Scholar 

  48. T. Elzein, M. Nasser-Eddine, Ch. Delaite, S. Bistac, and P. Dumas, FTIR Study of Polycaprolactone Chain Organization at Interfaces, J. Colloid Interface Sci., 2004, 273, p 381-387

    Article  CAS  Google Scholar 

  49. M. Di Foggia, U. Corda, E. Plescia, P. Taddei, and A. Torreggiani, Effects of Sterilisation by High-Energy Radiation on Biomedical Poly-(ε-caprolactone)/Hydroxyapatite Composites, J. Mater. Sci.: Mater. Med., 2010, 21, p 1789-1797

    Article  CAS  Google Scholar 

  50. A. Dey, S.K. Nandi, B. Kundu, Ch. Kumar, P. Mukherjee, S. Roy, A.K. Mukhopadhyay, M.K. Sinha, and D. Basu, Evaluation of Hydroxyapatite and β-Tri Calcium Phosphate Microplasma Spray Coated Pin Intra-Medullary for Bone Repair in a Rabbit Model, Ceram. Int., 2011, 37, p 1377-1391

    Article  CAS  Google Scholar 

  51. C.D. Wagner, W.M. Riggs, and L.E. Davis, Handbook of Standard Data for Use in X-Ray Photoelectron Spectroscopy, Perkin-Elmer Corp. Physical Electronics Div., Norwalk, CT, 1979

    Google Scholar 

  52. M.G. Raucci, V. D’Antò, V. Guarino, E. Sardella, S. Zeppetelli, P. Favia, and L. Ambrosio, Biomineralized Porous Composite Scaffolds Prepared by Chemical Synthesis for Bone Tissue Regeneration, Acta Biomater., 2010, 6(10), p 4090-4099

    Article  CAS  Google Scholar 

  53. S.R. Brown, I.G. Turner, and H. Reiter, Residual Stress Measurement in Thermal Sprayed Hydroxyapatite Coatings, J. Sci. Mater.: Mater. Med., 1994, 5, p 756-759

    Article  CAS  Google Scholar 

  54. S.W.K. Kweh, K.A. Khor, and P. Cheang, Plasma-Sprayed Hydroxyapatite (HA) Coatings with Flame-Spheroidized Feedstock: Microstructure and Mechanical Properties, Biomaterials, 2000, 21(12), p 1223-1234

    Article  CAS  Google Scholar 

  55. L. Shor, S. Güçeri, X. Wen, M. Gandhi, and W. Sun, Fabrication of Three-Dimensional Polycaprolactone/Hydroxyapatite Tissue Scaffolds and Osteoblast-Scaffold Interactions In Vitro, Biomaterials, 2007, 28(35), p 5291-5297

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr N.E. Vrana (MPRC, DCU, Ireland) for his help during biological testing and interpretation of cellular response results, T. Fernández Landaluce (TU Eindhoven, The Netherlands) for her help with the XPS measurements and data interpretation, and Prof. R. Heimann (TU Bergakademie, Germany) for his advice during the elaboration of this article. This research was supported by a Marie Curie Early Stage Research Training Fellowship of the European Community’s Sixth Framework Programme (MEST-CT-2005-020621).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diana Garcia-Alonso.

Additional information

This article is based on an oral presentation at the 2009 International Thermal Spray Conference, Las Vegas, Nevada, USA, May 4-7, 2009, and has been expanded from the original presentation. Proceedings of the ITSC 2009: Basil R. Marple, Margaret M. Hyland, Yuk-Chiu Lau, Chang-Jiu Li, Rogerio S. Lima, and Ghislain Montavon, Ed., ASM International, Materials Park, OH, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garcia-Alonso, D., Parco, M., Stokes, J. et al. Low-Energy Plasma Spray (LEPS) Deposition of Hydroxyapatite/Poly-ε-Caprolactone Biocomposite Coatings. J Therm Spray Tech 21, 132–143 (2012). https://doi.org/10.1007/s11666-011-9695-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-011-9695-0

Keywords

Navigation