Skip to main content
Log in

Laser machined macro and micro structures on glass for enhanced light trapping in solar cells

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In order to increase the efficiency of solar cell modules it is necessary to make the optimum use of light incident upon them. Much research has been done on improving light absorption through front surface texturisation and light trapping schemes. Laser light is commonly used in industry for various applications including marking and texturisation. By controlling laser parameters, it is possible to tailor macro and micro structures in most materials. The CO2 laser used in this investigation emits radiation at 10.6 μm with the ability to pulse in the micro-second range. The laser was used to ablate grooved textures in the fused quartz material, used in this study as the light trapping medium, following which an analysis of the effects of the laser parameters on the texture geometry and surface morphology was performed through a combination of cross sectioning and scanning electron microscopy. Transmission through the textured glass was improved for most samples after acid etching. The light trapping effects of the best performing textures were analysed by investigating the effects on a silicon solar cell’s performance at varying angles of incidence. Results indicated a significant increase in light trapping when light was incident at acute angles. For an angle of incidence of 10 a relative increase in efficiency of up to 51 % was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. Luque, S. Hegedus, Handbook of Photovoltaic Science and Engineering, 2nd edn. (Wiley, Chichester, 2011), pp. 265–356

    Google Scholar 

  2. P. Campbell, M.A. Green, Appl. Phys. 62, 243–249 (1987)

    Article  Google Scholar 

  3. D. Moore, S. Krishnamurthy, Y. Chao, Q. Wang, D. Brabazon, P.J. McNally, Phys. Status Solidi A 208, 604 (2011). doi:10.1002/pssa.201000381

    Article  ADS  Google Scholar 

  4. C.S. Solanki, in Solar Photovoltaics: Fundamentals, Technologies and Applications (PHI, New Delhi, 2009), pp. 109–114

    Google Scholar 

  5. P. Papet, O. Nichiporuk, A. Kaminski, Y. Rozier, J. Kraiem, J.-F. Lelievre, A. Chaumartin, A. Fave, M. Lemiti, Sol. Energy Mater. Sol. Cells 90(15), 2319–2328 (2006). doi:10.1016/j.solmat.2006.03.005

    Article  Google Scholar 

  6. D. Iencinella, E. Centurioni, R. Rizzoli, F. Zignani, Sol. Energy Mater. Sol. Cells 87(1–4), 725–732 (2005). doi:10.1016/j.solmat.2004.09.020

    Google Scholar 

  7. K. Wijekoon, T. Weidman, S. Paak, K. MacWilliams, in 35th IEEE Photovoltaic Specialists Conference (PVSC), 20–25 June (2010). doi:10.1109/PVSC.2010.5614441

    Google Scholar 

  8. J.A. Anna Selvan, A.E. Delahoy, S. Guo, Y.-M. Li, Sol. Energy Mater. Sol. Cells 90(18–19), 3371–3376 (2006). doi:10.1016/j.solmat.2005.09.018

    Google Scholar 

  9. J. Müller, B. Rech, J. Springer, M. Vanecek, Sol. Energy 77(6), 917–930 (2004). doi:10.1016/j.solener.2004.03.015

    Article  Google Scholar 

  10. J. Müller, J. Müller, G. Schope, B. Rech, H. Schade, P. Lechner, R. Geyer, H. Stiebig, W. Reetz, in Proc. of 3rd World Conference on Photovolt. Energy Convers., vol. 2 (2003), pp. 1839–1842

    Google Scholar 

  11. P. Campbell, M.A. Green, Sol. Energy Mater. Sol. Cells 65(1–4), 369–375 (2001). doi:10.1016/S0927-0248(00)00115-X

    Google Scholar 

  12. P.J. Sánchez-Illescas, P. Carpena, P. Bernaola-Galván, M. Sidrach-de-Cardona, A.V. Coronado, J.L. Álvarez, Sol. Energy Mater. Sol. Cells 92(3), 323–331 (2008). doi:10.1016/j.solmat.2007.09.008

    Article  Google Scholar 

  13. H. Sai, M. Kondo, in 35th IEEE Photovoltaic Specialists Conference (PVSC), 20–25 June 2010 (2010). doi:10.1109/PVSC.2010.5615886

    Google Scholar 

  14. X. Sheng, J. Liu, I. Kozinsky, A.M. Agarwal, J. Michel, L.C. Kimerling, in 35th IEEE Photovoltaic Specialists Conference (PVSC), 20–25 June 2010 (2010). doi:10.1109/PVSC.2010.5617124

    Google Scholar 

  15. T. Yagi, Y. Uraoka, T. Fuyuki, Sol. Energy Mater. Sol. Cells 90(16), 2647–2656 (2006). doi:10.1016/j.solmat.2006.02.031

    Article  Google Scholar 

  16. S.M. Karazi, A. Issa, D. Brabazon, Opt. Lasers Eng. 47(9), 956–964 (2009). doi:10.1016/j.optlaseng.2009.04.009

    Article  Google Scholar 

  17. M. Rahman, J.M.D. MacElroy, D.P. Dowling, J. Nanosci. Nanotechnol. 11(10), 8642–8651 (2011). doi:10.1166/jnn.2011.3458

    Article  Google Scholar 

  18. M. Kolli, M. Hamidouche, N. Bouaouadja, G. Fantozzi, J. Eur. Ceram. Soc. 29(13), 2697–2704 (2009). doi:10.1016/j.jeurceramsoc.2009.03.020

    Article  Google Scholar 

  19. J. Zhao, J. Sullivan, T.D. Bennett, Appl. Surf. Sci. 225(1–4), 250–255 (2004). doi:10.1016/j.apsusc.2003.10.012

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by Irish Research Council for Science, Engineering, and Technology (IRCSET) Embark Initiative.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Moore.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moore, D., Rahman, M., Dowling, D.P. et al. Laser machined macro and micro structures on glass for enhanced light trapping in solar cells. Appl. Phys. A 110, 661–665 (2013). https://doi.org/10.1007/s00339-012-7147-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7147-4

Keywords

Navigation