Skip to main content
Log in

Interaction between essential trace and toxic elements in the scalp hair samples of smokers and alcohol user diabetics

  • Original Article
  • Published:
International Journal of Diabetes in Developing Countries Aims and scope Submit manuscript

Abstract

In the present study, trace and toxic elements were determined in the Scalp Hair (SH) samples of patients diagnosed with diabetes mellitus (DM) who were smokers and habitual alcohol drinkers living in Dublin, Ireland. The concentrations of elements were measured by inductively coupled plasma atomic emission spectrophotometer after microwave-assisted acid digestion. The validity and accuracy of the methodology was checked using Certified Reference Material (CRM) (NCS ZC 81002b) and by the conventional wet acid digestion method on the same CRM. The results of this study showed that the mean values of cadmium, copper, iron, nickel and lead were significantly higher (P < 0.001), in scalp hair samples of diabetic patients as compared to referents of both gender. While the smokers and alcohol drinker referents and DM patients have two to three time higher values of these elements than those subjects who were not smokers and teetotallers. The concentrations of zinc, chromium and manganese were lower in the scalp hair samples of diabetic patients as compared to referents. The deficiency of zinc, chromium and manganese, while the high exposure of cadmium, lead and nickel, as a result of cigarette smoking and alcohol consumption, may be synergistic with risk factors associated with diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Groop LC. Insulin resistance: the fundamental trigger of type 2 diabetes. Diabetes Obes Metab. 1999;1:1–7.

    Article  Google Scholar 

  2. Zargar AH, Shah NA, Masoodi SR, Laway BA, Dar FA, Khan AR, Sofi FA, Wani AI. Copper, zinc and magnesium levels in type-1 diabetes mellitus. Saudi Med J. 2002;23:539–42.

    PubMed  Google Scholar 

  3. Bhanot S, Thompson KH, Mcneill JH. Essential trace elements of potential importance in nutritional management of diabetes mellitus. Nutr Res. 1994;14:593–604.

    Article  Google Scholar 

  4. Zargar AH, Shah NA, Massodi SR. Copper, zinc and magnesium levels in non- insulin-dependent diabetes mellitus. Postgard Med J. 1998;74:665–8.

    Article  CAS  Google Scholar 

  5. Chen MD, Lin PY, Tsou CT, Wang JJ, Lin WH. Selected metals status in patients with noninsulin-dependent diabetes mellitus. Biol Trace Elem Res. 1995;50:119–24.

    Article  PubMed  Google Scholar 

  6. Chausmer AB. Zinc, insulin and diabetes. J Am Coll Nutr. 1998;17:109–15.

    PubMed  CAS  Google Scholar 

  7. DiSilvestro RA. Zinc in relation to diabetes and oxidative disease. J Nutr. 2000;130:1509–11.

    Google Scholar 

  8. Singh RB, Niaz MA, Rastogi SS, Bajaj S, Gaoli Z, Shoumin Z. Current zinc intake and risk of diabetes and coronary artery disease and factors associated with insulin resistance in rural and urban populations of North India. J Am Coll Nutr. 1998;17:564–70.

    PubMed  CAS  Google Scholar 

  9. Anderson R, Roussel AM, Zouari N. Potential antioxidant effects of zinc and chromium supplementation in people with type 2 diabetes mellitus. J Am Coll Nutr. 2001;20:212–8.

    PubMed  CAS  Google Scholar 

  10. Al-Maroof RA, Al-Sharbatti SS. Serum zinc levels in diabetic patients and effect of zinc supplementation on glycemic control of type 2 diabetics. Saudi Med J. 2006;27:344–50.

    PubMed  Google Scholar 

  11. Stupar J, Vrtovec M, Dolinsek F. Longitudinal hair chromium profiles of elderly subjects with normal glucose tolerance and type 2 diabetes mellitus. Metab Clin Exp. 2007;56:94–104.

    Article  PubMed  CAS  Google Scholar 

  12. Althuis MD, Jordan NE, Ludington EA, Wittes JT. Glucose and insulin responses to dietary chromium supplements: a meta-analysis. Am J Clin Nutr. 2002;76:148–55.

    PubMed  CAS  Google Scholar 

  13. Bond JS, Failla ML, Unger DF. Elevated manganese concentration and arginase activity in livers of streptozotocin-induced diabetic rats. J Biol Chem. 1983;258:8004–9.

    PubMed  CAS  Google Scholar 

  14. Korc M. Manganese action on pancreatic protein synthesis in normal and diabetic rats. Am J Physiol. 1983;245:628–34.

    Google Scholar 

  15. Fatima N, Maqsood ZT, Khan B. Study of some micronutrients in selected medicinal plants. Sci Iran. 2005;12:269–73.

    CAS  Google Scholar 

  16. Fernandez-Real JM, Penarroja G, Castro A, Garcia-Bragado F, Hernandez-Aguado I, Ricart W. Blood letting in high-ferritin type 2 diabetes. Effects on insulin sensitivity and β-cell function. Diabetes. 2002;51:1000–4.

    Article  PubMed  CAS  Google Scholar 

  17. Jiang R, Manson JE, Meigs JB. Body iron stores in relation to risk of type 2 diabetes in apparently healthy women. JAMA. 2004;291:711–7.

    Article  PubMed  CAS  Google Scholar 

  18. Klaus KA, Witte MB, Andrew L, Clark MA, John GF. Chronic heart failure and micronutrients. J Am Coll Cardiol. 2001;37:1765–74.

    Article  Google Scholar 

  19. Tso TC. Seed to smoke. In: Davis DL, Nielsen MT, editors. Tobacco: production, chemistry and technology. Oxford: Blackwell Science; 1999.

    Google Scholar 

  20. Tsadilas CD. Soil pH influence on cadmium uptake by tobacco in high cadmium exposure. J Plant Nutr. 2000;23:1167–78.

    Article  CAS  Google Scholar 

  21. Chiba M, Masironi R. Toxic and trace-elements in tobacco and tobacco-smoke. Bull WHO. 1992;70:269–75.

    PubMed  CAS  Google Scholar 

  22. Gairola CG, Wagner GJ. Cadmium accumulation in the lung, liver and kidney of mice and rats chronically exposed to cigarette smoke. J Appl Toxicol. 1991;11:355–8.

    Article  PubMed  CAS  Google Scholar 

  23. Hecht SS. Tobacco carcinogens, their biomarkers and tobacco-induced cancer. Nat Rev Cancer. 2003;3:733–44.

    Article  PubMed  CAS  Google Scholar 

  24. Lin JL, Lin-Tan DT, Hsu KH, Yu CC. Environmental lead exposure and progression of chronic renal diseases in patients without diabetes. N Engl J Med. 2003;348:277–86.

    Article  PubMed  CAS  Google Scholar 

  25. Buchet JP, Lauwerys R, Roels H, Bernard A, Bruaux P, Claeys F. Renal effects of cadmium body burden of the general population. Lancet. 1990;336:699–702.

    Article  PubMed  CAS  Google Scholar 

  26. Akesson A, Lundh T, Vahter M, Bjellerup P, Lidfeldt J, Nerbrand C. Tubular and glomerular kidney effects in Swedish women with low environmental cadmium exposure. Environ Health Perspect. 2005;113:1627–31.

    Article  PubMed  Google Scholar 

  27. Jin T, Nordberg G, Sehlin J, Wallin H, Sandberg S. The susceptibility to nephrotoxicity of streptozotocin-induced diabetic rats subchronically exposed to cadmium chloride in drinking water. Toxicology. 1999;142:69–75.

    Article  PubMed  CAS  Google Scholar 

  28. Kazi TG, Afridi HI, Kazi N, Jamali MK, Arain MB, Jalbani N, Baig JA. Distribution of zinc, copper and iron in biological samples of Pakistani myocardial infarction (1st, 2nd and 3rd heart attack) patients and controls. Clin Chim Acta. 2008;389:114–9.

    Article  PubMed  CAS  Google Scholar 

  29. Afridi HI, Kazi TG, Kazi N, Jamali MK, Arain MB, Jalbani N, Shah AQ. Evaluation of status of toxic metals in biological samples of diabetes mellitus patients. Diabetes Res Clin Pract. 2008;80:280–8.

    Article  PubMed  CAS  Google Scholar 

  30. Afridi HI, Kazi TG, Kazi GH. Analysis of heavy metals in scalp hair samples of hypertensive patients by conventional and microwave digestion methods. Spectrosc Lett. 2006;39:203–14.

    Article  CAS  Google Scholar 

  31. Webb P, Nishida C, Darnton-Hill I. Age and gender as factors in the distribution of global micronutrient deficiencies. Nutr Rev. 2007;65:233–45.

    Article  PubMed  Google Scholar 

  32. Abou-Seif MA, Youssef AA. Evaluation of some biochemical changes in diabetic patients. Clin Chim Acta. 2004;346:161–70.

    Article  PubMed  CAS  Google Scholar 

  33. Will JC, Galuska DA, Ford ES, Mokdad A, Calle EE. Cigarette smoking and diabetes mellitus: evidence of a positive association from a large prospective cohort study. Int J Epidemiol. 2001;30:540–6.

    Article  PubMed  CAS  Google Scholar 

  34. Haire-Joshu D, Glasgow RE, Tibbs TL. Smoking and diabetes. Diabetes Care. 1999;22:1887–98.

    Article  PubMed  CAS  Google Scholar 

  35. Attvall S, Fowelin J, Lager I, Von Schenck H, Smith U. Smoking induces insulin resistance—a potential link with the insulin resistance syndrome. J Intern Med. 1993;233:327–32.

    Article  PubMed  CAS  Google Scholar 

  36. Shimokata H, Muller DC, Andres R. Studies in the distribution of body fat. III. Effects of cigarette smoking. JAMA. 1989;261:1169–73.

    Article  PubMed  CAS  Google Scholar 

  37. Talamini G, Bassi C, Falconi M, Sartori N, Salvia R, Rigo L. Alcohol and smoking as risk factors in chronic pancreatitis and pancreatic cancer. Dig Dis Sci. 1999;44:1303–11.

    Article  PubMed  CAS  Google Scholar 

  38. Pryor WA. Cigarette smoke radicals and the role of free radicals in chemical carcinogenicity. Environ Health Perspect. 1997;4:875–82.

    Google Scholar 

  39. Cigarettes: what the warning label doesn’t tell you? The American Council on Science and Health, 1996.

  40. Kazi TG, Jalbani N, Arain MB. Toxic metals distribution in different components of Pakistani and imported cigarettes by electrothermal atomic absorption spectrometer. J Hazard Mater. 2009;163:302–7.

    Article  PubMed  CAS  Google Scholar 

  41. Csalari J, Szantai K. Transfer rate of cadmium, lead, zinc and iron from the tobacco-cut of the most popular Hungarian cigarette brands to the combustion products. Acta Aliment. 2002;31:279–88.

    Article  CAS  Google Scholar 

  42. Sharma G, Sandhir R, Nath R, Gill K. Effect of ethanol on cadmium uptake and metabolism of zinc and copper in rats exposed to cadmium. J Nutr. 1991;121:87–91.

    PubMed  CAS  Google Scholar 

  43. Chung JS, Franco RJS, Curi PR. Renal excretion of zinc in normal individuals during zinc tolerance test and glucose tolerance test. Trace Elem Electrol. 1995;12:62–7.

    Google Scholar 

  44. Eliasson B, Bjornsson E, Urbanavicius V, Andersson H, Fowelin J, Attvall S, Abrahamsson H, Smith U. Hyperinsulinaemia impairs gastrointestinal motility and slows carbohydrate absorption. Diabetologia. 1995;38:79–85.

    Article  PubMed  CAS  Google Scholar 

  45. Thomas MC, MacIsaac R, Tsalamandris C, Power D, Jerums G. Unrecognised anaemia and diabetes; a cross sectional survey. Diabetes Care. 2003;26:1164–9.

    Article  PubMed  Google Scholar 

  46. Thomas MC, MacIsaac RJ, Tsalamandris C, Jerums G. Elevated iron indices in patients with diabetes. Diabet Med. 2004;21:798–802.

    Article  PubMed  CAS  Google Scholar 

  47. Beckman JA, Creager MA, Libby P. Diabetes and atherosclerosis: epidemiology, pathophysiology, and management. JAMA. 2002;287:2570–81.

    Article  PubMed  CAS  Google Scholar 

  48. Beshgetoor D, Hambidge M. Clinical conditions altering copper metabolism in humans. Am J Clin Nutr. 1998;67:1017S–21.

    PubMed  CAS  Google Scholar 

  49. Tan KCB, Aiv VGH, Chow WS, Chau MT, Leong L, Lam KSL. Influence of Low Density Lipoprotein (LDL) subfraction profile and LDL oxidation on endothelium-dependent and independent vasodilation in patients with type 2 diabetes. J Clin Endocrinol Metab. 1999;84:3212–6.

    Article  PubMed  CAS  Google Scholar 

  50. Anderson RA. Chromium in the prevention and control of diabetes. Diabetes Metab. 2002;26:22–7.

    Google Scholar 

  51. Anderson RA. Chromium, glucose intolerance and diabetes. J Am Coll Nutr. 1998;17:548–55.

    PubMed  CAS  Google Scholar 

  52. Cefalu WT, Wang ZQ, Zhang XH, Baldor LC, Russell JC. Oral chromium picolinate improves carbohydrate and lipid metabolism and enhances skeletal muscle Glut-4 translocation in obese, hyperinsulinemic (JCR-LA corpulent) rats. J Nutr. 2002;132:1107–14.

    PubMed  CAS  Google Scholar 

  53. Davies S, McLaren Howard J, Hunnisett A, Howard M. Age-related decreases in chromium levels in 51,665 hair, sweat, and serum samples from 40,872 patients: implications for the prevention of cardiovascular disease and type II diabetes mellitus. Metabolism. 1997;46:469–73.

    Article  PubMed  CAS  Google Scholar 

  54. Bahijri S, Mufti M. Beneficial effects of chromium in people with type 2 diabetes, and urinary chromium response to glucose load as a possible indicator of status. Biol Trace Elem Res. 2002;85:97–109.

    Article  PubMed  CAS  Google Scholar 

  55. Khamaisi M, Wexler ID, Skrha J, Strojek K, Raz I, Milicevic Z. Cardiovascular disease in type 2 diabetics: epidemiology, risk factors and therapeutic modalities. Isr Med Assoc J. 2003;5:801–6.

    PubMed  Google Scholar 

  56. Rajpathak S, Rimm EB, Li T, Morris JS, Stampfer MJ, Willett WC, Hu FB. Lower toenail chromium in men with diabetes and cardiovascular disease compared with healthy men. Diabetes Care. 2004;27:2211–6.

    Article  PubMed  CAS  Google Scholar 

  57. Ekmekcioglu C, Prohaska C, Pomazal K, Steffan I, Schernthaner G, Marktl W. Concentrations of seven trace elements in different hematological matrices in patients with type 2 diabetes as compared to healthy controls. Biol Trace Elem Res. 2001;79:205–19.

    Article  PubMed  CAS  Google Scholar 

  58. Naga Raju GJ, Sarita P, Ramana Murty GAV, Ravi Kumar M, Reddy BS, Charles MJ, Lakshminarayana S, Vijayan V. Estimation of trace elements in some anti-diabetic medicinal plants using PIXE technique. Appl Radiat Isot. 2006;64:893–900.

    Article  PubMed  CAS  Google Scholar 

  59. Nielson FH. Individual functional roles of metal ions in vivo: beneficial metal ions. Nickel. In: Berthon G, editor. Handbook of metal-ligand interactions in biological fluids. Bioinorganic medicine, vol. 1. New York: Marcel Dekker; 1995. p. 257–60.

    Google Scholar 

  60. Yarat A, Nokay S, Ipbuker A, Emekli N. Serum nickel levels of diabetic patients and healthy controls by AAS with a graphite furnace. Biol Trace Elem Res. 1992;35:273–80.

    Article  PubMed  CAS  Google Scholar 

  61. Bonnefont-Rousselot D. The role of antioxidant micronutrients in the prevention of diabetic complications. J Treat Endocrinol. 2004;3:41–52.

    Article  CAS  Google Scholar 

  62. O’Dell BL, Sunde RA. Handbook of Nutritionally Essential Mineral Elements. Marcel Dekkar; 1997.

  63. Ezaki O. IIb group metal ions (Zn2+, Cd2+, Hg2+) stimulate glucose transport activity by post-insulin receptor kinase mechanism in rat adipocytes. J Biol Chem. 1989;264:16118–22.

    PubMed  CAS  Google Scholar 

  64. Harrison SA, Buxton JM, Clancy BM, Czech MP. Evidence that erythroid-type glucose transporter intrinsic activity is modulated by cadmium treatment of mouse 3T3-L1 cells. J Biol Chem. 1991;266:19438–49.

    PubMed  CAS  Google Scholar 

  65. Yamamoto A, Wada O, Ono T, Ono H. Cadmium stimulates glucose metabolism in rat adipocytes. J Inorg Biochem. 1986;27:221–6.

    Article  PubMed  CAS  Google Scholar 

  66. Nilsson T, Rorsman F, Berggren PO, Hellman B. Accumulation of cadmium in pancreatic beta cells is similar to that of calcium in being stimulated by both glucose and high potassium. Biochim Biophys Acta. 1986;888:270–7.

    Article  PubMed  CAS  Google Scholar 

  67. Merali Z, Singhal RL. Diabetogenic effects of chronic oral cadmium administration to neonatal rats. Br J Pharmacol. 1980;69:151–7.

    Article  PubMed  CAS  Google Scholar 

  68. Gonzalez-Cossio T, Peterson KE, Sanin LH, Fishbein E, Palazuelos E, Aro A. Decrease in birth weight in relation to maternal bone-lead burden. Pediatrics. 1997;100:856–62.

    Article  PubMed  CAS  Google Scholar 

  69. Silbergeld EK. Lead in bone: implications for toxicology during pregnancy and lactation. Environ Health Perspect. 1991;91:63–70.

    Article  PubMed  CAS  Google Scholar 

  70. Ford ES. Vitamin supplement use and diabetes mellitus incidence among adults in the United States. Am J Epidemiol. 2001;153:892–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

Dr. Hassan Imran Afridi is grateful to Higher Education Commission (HEC) of Pakistan for providing the scholarships for the post doctoral research work. Dr. H.I. Afridi is also thankful to National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Pakistan for the grant of sabbatical leave.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Imran Afridi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Afridi, H.I., Kazi, T.G., Brabazon, D. et al. Interaction between essential trace and toxic elements in the scalp hair samples of smokers and alcohol user diabetics. Int J Diabetes Dev Ctries 32, 151–162 (2012). https://doi.org/10.1007/s13410-012-0083-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13410-012-0083-1

Keywords

Navigation