Skip to main content

Advertisement

Log in

Experimental Analysis of Spray Dryer Used in Hydroxyapatite Thermal Spray Powder

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

The spray drying process of hydroxyapatite (HA) powder used as a plasma spray powder on human hip implants was examined. The Niro-Minor mixed spray dryer was studied because it incorporates both co-current and counter-current air mixing systems. The process parameters of the spray drying were investigated: temperature, flow rate of the inlet hot air in the spray dryer, viscosity of feed/HA slurry, and responses (chamber and cyclone powder size, deposition of powder on the wall of spray dryer, and overall thermal efficiency). The statistical analysis (ANOVA test) showed that for the chamber particle size, viscosity was the most significant parameter, while for the cyclone particle size, the main effects were temperature, viscosity, and flow rate, but also their interaction effects were significant. The spray dried HA powder showed the two main shapes were a doughnut and solid sphere shape as a result of the different input.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. K. Masters, Spray Drying Handbook, 4th ed., George Gowdin, London, 1985, ISBN 0-7114-5805-7

    Google Scholar 

  2. W.B. Eisen et al., Powder Metal Technologies and Application, Vol 7, ASM Handbook, ASM International, Materials Park, 1998

  3. G. Bertrand et al., Spray-Dried Ceramic Powders: A Quantitative Correlation Between Slurry Characteristics and Shapes of the Granules, Chem. Eng. Sci., 2005, 60(1), p 95-102

    Article  CAS  Google Scholar 

  4. A.S. Mujumdar, Advance in Drying, Vol 1, Hemisphere, New York, 1980, ISBN 0-89116-185-6

    Google Scholar 

  5. E.M. Fayed and O. Lamber, Handbook of Powder Science and Technology, Chapman and Hall, New York, 1997, p 273-276

    Book  Google Scholar 

  6. E. Klar, Powder Metallurgy, Vol 7, 9th ed., ASM Handbook (formerly Metals Handbook), ASM International (formerly American Society for Metals), Materials Park, 1995 (originally published in 1984)

  7. A. Lawley, Preparation of Metal Powders, Annu. Rev. Mater Sci., 1978, 8, p 49

    Article  CAS  Google Scholar 

  8. F.V. Shaw and M.H. Andrews, Spray Drying: Carbide, Nitride and Boride Materials Synthesis and Processing, Chapman and Hall, London, 1997, ISBN 0-412-54060-6

    Google Scholar 

  9. F.G. Kieviet, “Modelling Quality in Spray Drying,” Ph.D. thesis, Eindhoven University of Technology, Eindhoven, 1997

  10. H. Takahashi, N. Shinohara, and K. Uematsu, Influence of Spray-Dryer Slurry Flocculation on the Structure of Sintered Silicon Nitride, J. Ceram. Soc., 1996, 104(1), p 59-62

    Article  CAS  Google Scholar 

  11. W.J. Walker, J.S. Reed, and S.K. Verma, Influence of Slurry Parameters on the Characteristics of Spray-Dried Granules, J. Am. Ceram. Soc., 1999, 82(7), p 1711-1719

    Article  CAS  Google Scholar 

  12. J. Tsubaki, H. Yamakawa, T. Mori, and H. Mori, Optimization of Granules and Slurries for Press Forming, J. Ceram., 2002, 110(10), p 894-898

    Article  CAS  Google Scholar 

  13. N.H. Mermelstein, Spray Drying, Food Technol., 2001, 55(4), p 92-96

    Google Scholar 

  14. S.W.K. Kweh et al., The Production and Characterization of Hydroxyapatite (HA) Powder, J. Mater. Process. Technol., 1999, 89-90, p 373-377

    Article  Google Scholar 

  15. P. Luo and T.G. Nieh, Synthesis of Ultrafine Hydroxyapatite Particles by a Spray Dry Method, J. Mater. Sci. Eng., 1999, 3(C), p 75-78

    Google Scholar 

  16. W. Suchanek and M. Yoshimura, Processing and Properties of Hydroxyapatite-Based Biomaterials for Use as Hard Tissue Replacement Implants, J. Mater. Res., 1998, 13, p 94-114

    Article  CAS  Google Scholar 

  17. P. Cheang and K.A. Khor, Thermal Spraying of Hydroxyapatite (HA) Coatings: Effect of Powder Feedstock, J. Mater. Process. Technol., 1995, 48, p 429-436

    Article  Google Scholar 

  18. P. Cheang and K.A. Khor, Addressing Processing Problems Associated with Plasma Coating of Hydroxyapatite Coatings, J. Biomater., 1996, 17, p 537-544

    Article  CAS  Google Scholar 

  19. S. Kim et al., Effect of Calcinations of Starting Powder on Mechanical Properties of HA-Alumina Bioceramic Composite, J. Mater. Sci. Mater. Med., 2002, 13, p 307-310

    Article  CAS  Google Scholar 

  20. P.R. Gabriel et al., Measurement of Thermal Diffusivity of Bone, Hydroxyapatite and Metals for Biomedical Application, Jpn. Soc. Anal. Chem., 2001, 17, p S-357-360

    Google Scholar 

  21. V. Guipont et al., High Pressure Plasma Spraying of Hydroxyapatite Powders, Mater. Sci. Eng. A, 2002, 325, p 9-18

    Article  Google Scholar 

  22. I. Knets et al., Glass and Hydroxyapatite Coating on Titanium Implants, J. Biomech., 1998, 31(1), p 166

    Article  Google Scholar 

  23. C.S. Yip et al., Thermal Spraying of Ti-6Al-4V/Hydroxyapatite Composites Coatings: Powder Processing and Post-Spray Treatment, J. Mater. Process. Technol., 1997, 65, p 73-79

    Article  Google Scholar 

  24. H. Li, K.A. Khor, R. Kumar, and P. Cheang, Characterization of Hydroxyapatite/Nano-Zirconia Composite Coatings Deposited by High Velocity Oxy-Fuel (HVOF) Spray Process, Surf. Coat. Technol., 2004, 182, p 227-236

    Article  CAS  Google Scholar 

  25. K.A. Khor, H. Li, and P. Cheang, Significance of Melt-Fraction in HVOF Sprayed Hydroxyapatite Particles, Splats and Coatings, Biomaterials, 2004, 25, p 1177-1186

    Article  CAS  Google Scholar 

  26. A.J. Allen et al., Microstructural Characterization Studies to Relate the Properties of Thermal Spray Coatings to Feedstock and Spray Conditions, Surf. Coat. Technol., 2001, 146-147, p 544-552

    Article  CAS  Google Scholar 

  27. J. Gomez-Morales, Precipitation of Stoichiometric Hydroxyapatite by a Continuous Method, J. Cryst. Res. Technol., 2001, 36(1), p 15-26

    Article  CAS  Google Scholar 

  28. S. Rhee, Synthesis of Hydroxyapatite via Mechanochemical Treatment, J. Biomater., 2002, 23, p 1147-1152

    Article  CAS  Google Scholar 

  29. S. Raynaud et al., Calcium Phosphate Apatites with Variable Ca/P Atomic Ratio, Synthesis, Characterisation and Thermal Stability of Powders, J. Biomater., 2002, 23, p 1065-1072

    Article  CAS  Google Scholar 

  30. P. Luo and T.G. Nieh, Preparing Hydroxyapatite Powders with Controlled Morphology, J. Mater. Process. Technol., 1999, 89-90, p 550-555

    Article  Google Scholar 

  31. E. Horowitz and J.E. Parr, Calcium Phosphate (Ca-P) Coating Draft Guidance for Preparation of FDA Submissions for Orthopaedic and Dental Endosseous Implants, U.S. Food and Drug Administration, 1992

  32. R.D. Reitz and F.V. Bracco, Mechanism of Breakup of Round Liquid Jets, Encyclopaedia of Fluid Mechanics, Gulf Publication, Houston, 1986, p 233-249

  33. H.A. Barnes, J.F. Hutton, and K. Walters, An Introduction to Rheology, Elsevier, Amsterdam, 1989

    Google Scholar 

  34. F.A. Holland and R. Bragg, Fluid Flow for Chemical Engineers, 2nd ed., Edward Arnold, London, 1995

    Google Scholar 

  35. R.I. Tanner, Engineering Rheology, Rheology International Series 2 Viscometer, Manual, Oxford University Press, New York, 1985

    Google Scholar 

  36. T. Athena et al., Optimization of the Rheological Properties of Alumina Slurries for Ceramic Processing Applications, J. Eur. Ceram. Soc., 2001, 21, p 493-506

    Article  Google Scholar 

  37. F. Iskander et al., Control of the Morphology of Nanostructured Particles Prepared by the Spray Drying of a Nanoparticle Sol, J. Coll. Interface Sci., 2003, 265, p 296-303

    Article  Google Scholar 

  38. P.K. Senecal et al., Modelling High Speed Viscous Liquid Sheet Atomisation, Int. J. Multiph. Flow, 1999, 25, p 1073-1097

    Article  CAS  Google Scholar 

  39. V.G. Levich, Physicochemical Hydrochemical Hydrodynamics, Prentice-Hall, Upper Saddle River, 1962

    Google Scholar 

  40. F. Fontana, A. Grossi, and P.G. Molari, Study Concerning Flow distribution Inside a Spray Drier, Ceram. Acta, 1999, 11(1), p 15-21

    Google Scholar 

  41. J.K. Dukowicz, A Particle-Fluid Numerical Model for Liquid Sprays, J. Comput. Phys., 1980, 35, p 229-305

    Article  Google Scholar 

  42. P.J. O’Rourke, “Collective Drop Effects on Vaporizing Liquid Sprays,” Ph.D. thesis, Princeton University, Princeton, 1981

  43. R.D. Reitz, Modelling Atomisation Processes in High-Pressure Vaporizing Sprays, Atom. Spray Technol., 1987, 3, p 307-311

    Google Scholar 

  44. A.H. Lefebvre, Atomisation & Sprays, Hemisphere, New York, 1989

    Google Scholar 

  45. F.X. Tanner, Liquid Jet Atomisation and Droplet Break-Up Modelling of Non-Evaporating Diesel Fuel Spray, SAE Trans. J. Engines, 1998, 106, p 127-140

    Google Scholar 

  46. S.V. Apte, M. Gorokhovski, and P. Moin, LES of Atomising Spray with Stochastic Modelling of Secondary Breakup, Int. J. Multiph. Flow, 2001, 29, p 1503-1522

    Article  Google Scholar 

  47. T.A.G. Langrish and I. Zbicinski, The Effect of Air Inlet Geometry and Spray Cone Angle on the Wall Deposition Rate in Spray Dryers, Trans. IChemE., 1994, 72A, p 420-430

    Google Scholar 

  48. K. Masters, Scale-up of Spray Dryers, Drying Technol., 1994, 12(1-2), p 235-257

    Article  CAS  Google Scholar 

  49. C. Kothapalli et al., Influence of Temperature and Concentration on the Sintering Behaviour and Mechanical Properties of Hydroxyapatite, Acta Mater., 2004, 52, p 5655-5663

    Article  CAS  Google Scholar 

  50. H.Y. Juang et al., Effect of Calcination on Sintering of Hydroxyapatite, Biomaterials, 1996, 17, p 2059-2064

    Article  CAS  Google Scholar 

  51. Y.M. Sung et al., Crystallization and Sintering Characteristics of Chemically Precipitated Hydroxyapatite Nanopowder, J. Cryst. Growth, 2004, 262, p 467-472

    Article  CAS  Google Scholar 

  52. S. Ramesh et al., Grain Size-Properties Correlation in Polycrystalline Hydroxyapatite Bioceramic, Malays. J. Chem., 2001, 3(1), p 35-40

    Google Scholar 

  53. K.A. Gross, “The Amorphous Phases in Hydroxyapatite Coatings,” Ph.D. dissertation, State University of New York at Stony Brook, Stony Brook, 1996, p 175

  54. A. Tampieri et al., Characteristics of Synthetic Hydroxyapatites and Attempts to Improve their Thermal Stability, Mater. Chem. Phys., 2002, 64, p 4-61

    Google Scholar 

Download references

Acknowledgments

The work was carried out with financial support of the Spraynet European project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q. Murtaza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murtaza, Q., Stokes, J. & Ardhaoui, M. Experimental Analysis of Spray Dryer Used in Hydroxyapatite Thermal Spray Powder. J Therm Spray Tech 21, 963–974 (2012). https://doi.org/10.1007/s11666-012-9791-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-012-9791-9

Keywords

Navigation