Effect of Annealing Treatment on the Wear Properties of Ni Rich NiTi Alloy Coatings

Article Preview

Abstract:

In the present study, NiTi alloy coatings were deposited onto AISI 316L stainless steel substrates using the Closed Field Unbalanced Magnetron Sputtering (CFUBMS) system. The as-deposited NiTi alloy coating was Ni rich NiTi alloy with a composition of 44.1 at. % of Ti and 55.9 at. % of Ni and demonstrated an amorphous structure. The post-annealing treatment of the as-deposited Ni rich NiTi alloy coating was successfully produced a crystalline structure. The as-deposited and the annealed Ni rich NiTi alloy coatings were characterized to determine the effect of the annealing process on their wear properties. The Ni rich NiTi phases and structure were determined by XRD. Wear morphology was investigated using the pin-on-disk wear test. The existence of a TiO2 rutile layer with a combination of the Ni3Ti and NiTi B2 parent phases, that formed during the annealing process produced a significant improvement over the wear performance compared to the as-deposited Ni rich NiTi SMA coating. The post-sputtered annealing process at the annealing temperatures of 550°C for a period of 60 minutes and 600°C for a period of 30 minutes succeeded in increasing the adhesion and wear resistance of the Ni rich NiTi coating. The findings show the potential the post-sputtering annealing process in creating an excellent structure of NiTi coating which demonstrates significant wear resistance properties for tribological applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

192-200

Citation:

Online since:

April 2013

Export:

Price:

[1] S. Mändl, A. Fleischer, D. Manova, B. Rauschenbach, Wear behaviour of NiTi shape memory alloy after oxygen-PIII treatment, J. Surf. Coat. Technol. 200 (2006) 6225-6229.

DOI: 10.1016/j.surfcoat.2005.11.070

Google Scholar

[2] A.V. Sergueeva, C. Song, R. Z. Valiev, A. K. Mukherjee, Structure and properties of amorphous and nanocrystalline NiTi prepared by severe plastic deformation and annealing, Mater. Sci. Eng. A. 339 1/2 (2003) 159-165.

DOI: 10.1016/s0921-5093(02)00122-3

Google Scholar

[3] K. Otsuka, X. Ren, Physical metallurgy of Ti–Ni-based shape memory alloys, Prog. Mater. Sci. 50 7 (2005) 511-678.

DOI: 10.1016/j.pmatsci.2004.10.001

Google Scholar

[4] Z. Wang, X. Zu, X. Feng, J. Dai, Effect of thermomechanical treatment on the two-way shape memory effect of NiTi alloy spring, Mater. Lett. 54 (2002) 5 55-61.

DOI: 10.1016/s0167-577x(01)00539-0

Google Scholar

[5] P. Surbled, C. Clerc, B. Le Pioufle, M. Ataka, H. Fujita, Effect of the composition and thermal annealing on the transformation temperatures of sputtered TiNi shape memory alloy thin films, Thin Solid Films. 401 12/17 (2001) 52-59.

DOI: 10.1016/s0040-6090(01)01634-0

Google Scholar

[6] N. Shevchenko, M. Pham, M. F. Maitz, Studies of surface modified NiTi alloy, Appl. Surf. Sci. 235 7/31 (2004) 126-131.

DOI: 10.1016/j.apsusc.2004.05.273

Google Scholar

[7] S. Sanjabi, S. K. Sadrnezhaad, K. A. Yates, Z. H. Barber, 2005. Growth and characterization of TixNi1−x shape memory thin films using simultaneous sputter deposition from separate elemental targets, Thin Solid Films. 491, 11/22 (2005) 190-196.

DOI: 10.1016/j.tsf.2005.06.004

Google Scholar

[8] W. Ni, Y. Cheng, M. Lukitsch, A.M. Weiner, L.C. Lev, D. S. Grummon, Novel layered tribological coatings using a superelastic NiTi interlayer, Wear. 259 (2005) 842-848.

DOI: 10.1016/j.wear.2005.01.015

Google Scholar

[9] X. Wang, Y. Bellouard, J. J. Vlassak, Laser annealing of amorphous NiTi shape memory alloy thin films to locally induce shape memory properties, Acta Materialia. 53 10 (2005) 4955-4961.

DOI: 10.1016/j.actamat.2005.07.022

Google Scholar

[10] N. W. Botterill, D. M. Grant, 2004. Novel micro-thermal characterisation of thin film NiTi shape memory alloys, Mater. Sci. & Eng. A. 378 7/25 (2004) 434-428.

DOI: 10.1016/j.msea.2003.10.337

Google Scholar

[11] X. Cao, X. Cao, Q. Zhang, Nanoscale indentation behavior of pseudo-elastic Ti–Ni thin films, J. Alloys Compd. 465 10/6 (2008) 491-496.

DOI: 10.1016/j.jallcom.2007.10.118

Google Scholar

[12] A. Kumar, D. Singh, R. N. Goyal, D. Kaur, 2009. Fabrication and nanoindentation properties of TiN/NiTi thin films and their applications in electrochemical sensing, Talanta. 78, 3 (2009) 964-969.

DOI: 10.1016/j.talanta.2009.01.005

Google Scholar

[13] L. Zhang, C. Xie, J. Wu, Effect of annealing temperature on surface morphology and mechanical properties of sputter-deposited Ti–Ni thin films, J. Alloys Compd. 427, 1/16 (2007) 238-243.

DOI: 10.1016/j.jallcom.2006.02.067

Google Scholar

[14] T. Abubakar, M. Rahman, D. P. Dowling, J. Stokes, Mechanical properties of the annealed NiTi shape memory alloy coating onto 316L stainless bio-steel, Defect Diffusion Forum. 297-301 (2010) 365-369.

DOI: 10.4028/www.scientific.net/ddf.297-301.365

Google Scholar