Skip to main content
Log in

Defect-mediated ferromagnetism in ZnO:Mn nanorods

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this work, the structural, chemical and magnetic properties of ZnO:Mn nanorods were investigated. Firstly, well-aligned ZnO nanorods with their long axis parallel to the crystalline c-axis were successfully grown by the vapor phase transport technique on Si substrates coated with a ZnO buffer layer. Mn metal was then diffused into these nanorods at different temperatures in vacuum. From SEM results, ZnO:Mn nanorods were observed to have diameters of ∼100 nm and lengths of 4 μm. XPS analysis showed that the Mn dopant substituted into the ZnO matrix with a valence state of +2. Magnetic measurements performed at room temperature revealed that undoped ZnO nanorods exhibit ferromagnetic behavior which may be related to oxygen vacancy defect-mediated d 0 ferromagnetism. ZnO:Mn samples were seen to show an excess room temperature ferromagnetism that is attributed to the presence of oxygen vacancy defects forming bound magnetic polarons involving Mn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Science 292, 1897 (2001)

    Article  ADS  Google Scholar 

  2. X. Wang, J. Song, J. Liu, Z.L. Wang, Science 316, 102 (2007)

    Article  ADS  Google Scholar 

  3. D. Pradhan, Z. Su, S. Sindhwani, J.F. Honek, K.T. Leung, J. Phys. Chem. C 115, 18149 (2011)

    Article  Google Scholar 

  4. M. Biswas, E. McGlynn, M.O. Henry, M. McCann, A. Rafferty, J. Appl. Phys. 105, 094306 (2009)

    Article  ADS  Google Scholar 

  5. P.D. Batista, M. Mulato, Appl. Phys. Lett. 87, 143508 (2005)

    Article  ADS  Google Scholar 

  6. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Science 287, 1019 (2000)

    Article  ADS  Google Scholar 

  7. K. Sato, H. Katayama-Yoshida, Jpn. J. Appl. Phys. Part 2 39, L555 (2000)

    Article  Google Scholar 

  8. P. Sharma, A. Gupta, K.V. Rao, F.J. Owens, R. Sharma, R. Ahuja, J.M.O. Guillen, B. Johansson, G.A. Gehring, Nat. Mater. 2, 673 (2003)

    Article  ADS  Google Scholar 

  9. S.-J. Han, T.-H. Jang, Y.B. Kim, B.-G. Park, J.-H. Park, Y.H. Jeong, Appl. Phys. Lett. 83, 920 (2003)

    Article  ADS  Google Scholar 

  10. J. Elanchezhiyan, K.P. Bhuvana, N. Gopalakrishnan, T. Balasubramanian, J. Alloys Compd. 463, 84 (2008)

    Article  Google Scholar 

  11. C.J. Cong, L. Liao, J.C. Li, L.X. Fan, K.L. Zhang, Nanotechnology 16, 981 (2005)

    Article  ADS  Google Scholar 

  12. J. Zhang, R. Skomski, D.J. Sellmyer, J. Appl. Phys. 97, 10D303 (2005)

    Google Scholar 

  13. D.L. Hou, X.J. Ye, H.J. Meng, H.J. Zhou, X.L. Li, C.M. Zhen, G.D. Tang, Mater. Sci. Eng. B 138, 184 (2007)

    Article  Google Scholar 

  14. J.B. Wang, G.J. Huang, X.L. Zhong, L.Z. Sun, Y.C. Zhou, E.H. Liu, Appl. Phys. Lett. 88, 252502 (2006)

    Article  ADS  Google Scholar 

  15. H.B. Wang, H. Wang, C. Zhang, F.J. Yang, C.P. Yang, H.S. Gu, M.J. Zhou, Q. Li, Y. Jiang, Mater. Chem. Phys. 113, 884 (2009)

    Article  Google Scholar 

  16. O.D. Jayakumar, H.G. Salunke, R.M. Kadam, M. Mohapatra, G. Yaswant, S.K. Kulshreshtha, Nanotechnology 17, 1278 (2006)

    Article  ADS  Google Scholar 

  17. H.L. Yan, X.L. Zhong, J.B. Wang, G.J. Huang, S.L. Ding, G.C. Zhou, Y.C. Zhou, Appl. Phys. Lett. 90, 082503 (2007)

    Article  ADS  Google Scholar 

  18. X.L. Wang, K.H. Lai, A. Ruotolo, J. Alloys Compd. 542, 147 (2012)

    Article  Google Scholar 

  19. C.G. Jin, T. Yu, Z.F. Wu, X.M. Chen, X.M. Wu, L.J. Zhuge, Appl. Phys. A 109, 173 (2012)

    Article  ADS  Google Scholar 

  20. S. Yılmaz, M. Parlak, Ş. Özcan, M. Altunbaş, E. McGlynn, E. Bacaksız, Appl. Surf. Sci. 257, 9293 (2011)

    Article  ADS  Google Scholar 

  21. P. Varshney, G. Srinet, R. Kumar, V. Sajal, S.K. Sharma, M. Knobel, J. Chandra, G. Gupta, P.K. Kulriya, Mater. Sci. Semicond. Process. 15, 314 (2012)

    Article  Google Scholar 

  22. S. Yılmaz, E. McGlynn, E. Bacaksız, Ş. Özcan, D. Byrne, M.O. Henry, R.K. Chellappan, J. Appl. Phys. 111, 013903 (2012)

    Article  ADS  Google Scholar 

  23. R.T.R. Kumar, E. McGlynn, M. Biswas, R. Saunders, G. Trolliard, B. Soulestin, J.-R. Duclere, J.P. Mosnier, M.O. Henry, J. Appl. Phys. 104, 084309 (2008)

    Article  ADS  Google Scholar 

  24. D. Byrne, E. McGlynn, K. Kumar, M. Biswas, M.O. Henry, G. Hughes, Cryst. Growth Des. 10, 2400 (2010)

    Article  Google Scholar 

  25. D. Byrne, R.F. Allah, T. Ben, D.G. Robledo, B. Twamley, M.O. Henry, E. McGlynn, Cryst. Growth Des. 11, 5378 (2011)

    Article  Google Scholar 

  26. X.B. Wang, C. Song, K.W. Geng, F. Zeng, F. Pan, Appl. Surf. Sci. 253, 6905 (2007)

    Article  ADS  Google Scholar 

  27. L. Yanmei, W. Tao, S. Xia, F. Qingqing, L. Qingrong, S. Xueping, S. Zaoqi, Appl. Surf. Sci. 257, 6540 (2011)

    Article  Google Scholar 

  28. E. McCarthy, R.T.R. Kumar, B. Doggett, S. Chakrabarti, R.J. O’Haire, S.B. Newcomb, J.-P. Mosnier, M.O. Henry, E. McGlynn, J. Phys. D, Appl. Phys. 44, 375401 (2011)

    Article  Google Scholar 

  29. R.K. Singhal, M.S. Dhawan, S.K. Gaur, S.N. Dolia, S. Kumar, T. Shripathi, U.P. Deshpande, Y.T. Xing, E. Saitovitch, K.B. Garg, J. Alloys Compd. 477, 379 (2009)

    Article  Google Scholar 

  30. X. Yan, D. Hu, H. Li, L. Li, X. Chong, Y. Wang, Physica B 406, 3956 (2011)

    Article  ADS  Google Scholar 

  31. W.B. Mi, H.L. Bai, H. Liu, C.Q. Sun, J. Appl. Phys. 101, 023904 (2007)

    Article  ADS  Google Scholar 

  32. D. Wang, S. Park, Y. Lee, T. Eom, S. Lee, Y. Lee, C. Choi, J. Li, C. Liu, Cryst. Growth Des. 9, 2124 (2009)

    Article  Google Scholar 

  33. U. Ilyas, R.S. Rawat, T.L. Tan, P. Lee, R. Chen, H.D. Sun, L. Fengji, S. Zhang, J. Appl. Phys. 111, 033503 (2012)

    Article  ADS  Google Scholar 

  34. U. Ilyas, R.S. Rawata, G. Roshana, T.L. Tana, P. Leea, S.V. Springhama, S. Zhangc, L. Fengjic, R. Chend, H.D. Sund, Appl. Surf. Sci. 258, 890 (2011)

    Article  ADS  Google Scholar 

  35. M.M. Can, S.I. Shah, M.F. Doty, C.R. Haughn, T. Fırat, J. Phys. D, Appl. Phys. 45, 195104 (2012)

    Article  ADS  Google Scholar 

  36. S. Ghosh, G.G. Khan, B. Das, K. Mandal, J. Appl. Phys. 109, 123927 (2011)

    Article  ADS  Google Scholar 

  37. G. Xing, D. Wang, J. Yi, L. Yang, M. Gao, M. He, J. Yang, J. Ding, T.C. Sum, T. Wu, Appl. Phys. Lett. 96, 112511 (2010)

    Article  ADS  Google Scholar 

  38. D. Gao, J. Zhang, G. Yang, J. Zhang, Z. Shi, J. Qi, Z. Zhang, D. Xue, J. Phys. Chem. C 114, 13477 (2010)

    Article  Google Scholar 

  39. J.M.D. Coey, M. Venkatesan, C.B. Fitzgerald, Nat. Mater. 4, 173 (2005)

    Article  ADS  Google Scholar 

  40. J.J. Liu, K. Wang, M.H. Yu, W.L. Zhou, J. Appl. Phys. 102, 024301 (2007)

    Article  ADS  Google Scholar 

  41. C.J. Cong, L. Liao, Q.Y. Liu, J.C. Li, K.L. Zhang, Nanotechnology 17, 1520 (2006)

    Article  ADS  Google Scholar 

  42. J. Zhang, X.Z. Li, J. Shi, Y.F. Lu, D.J. Sellmyer, J. Phys. Condens. Matter 19, 036210 (2007)

    Article  ADS  Google Scholar 

  43. M.A. Garcia, M.L. Ruiz-Gonzalez, A. Quesada, J.L. Costa-Kramer, J.F. Fernandez, S.J. Khatib, A. Wennberg, A.C. Caballero, M.S. Martin-Gonzalez, M. Villegas, F. Briones, J.M. Gonzalez-Calbet, A. Hernando, Phys. Rev. Lett. 94, 217206 (2005)

    Article  ADS  Google Scholar 

  44. J. Goldberger, D.J. Sirbuly, M. Law, P. Yang, J. Phys. Chem. B 109, 9 (2005)

    Article  Google Scholar 

  45. N.H. Hong, E. Chikoidze, Y. Dumont, Physica B 404, 3978 (2009)

    Article  ADS  Google Scholar 

  46. H.-J. Lin, D.-Y. Lin, J.-Z. Hong, C.-S. Yang, C.-M. Lin, C.-F. Lin, Phys. Status Solidi C 6, 1468 (2009)

    Article  ADS  Google Scholar 

  47. V.K. Sharma, R. Xalxo, G.D. Varma, Cryst. Res. Technol. 42, 34 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

S.Y. is grateful to the Council of Turkish Higher Education for its financial support in visiting foreign institutions. This work was supported by the research fund of Karadeniz Technical University, Trabzon, Turkey, under contract No. 2010.111.001.3. E.McG. gratefully acknowledges support from the Science Foundation Ireland Strategic Research Cluster grant entitled “Functional Oxides and Related Materials for Electronics” (FORME). All the authors also would like to thank Prof. Dr. Ş. Özcan and Assoc. Prof. Dr. A. Ceylan for their efforts on magnetic measurements. All XPS analyses of the work were performed by Dr. M. Çopuroğlu in the Department of Chemistry of Bilkent University under the leadership of Prof. Dr. Ş. Süzer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Yılmaz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yılmaz, S., McGlynn, E., Bacaksız, E. et al. Defect-mediated ferromagnetism in ZnO:Mn nanorods. Appl. Phys. A 115, 313–321 (2014). https://doi.org/10.1007/s00339-013-7817-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7817-x

Keywords

Navigation