Skip to main content

Advanced Characterisation Techniques for Nanostructures

  • Chapter
  • First Online:
Micro and Nanomanufacturing Volume II

Abstract

This chapter presents some of the most important currently utilised techniques for the characterisation of nanostructures and nanoparticles. The techniques presented here are grouped into categories of topology, internal structure and compositional investigation. Topological techniques presented here include field emission scanning electron microscopy (FESEM), scanning probe microscopy (SPM), optical microscopy (confocal and NSOM) and particle size distribution with dynamic light scattering (DLS). Internal structure techniques presented include transmission electron microscope (TEM), magnetic resonance force microscope (MRFM) and X-ray diffraction (XRD). Compositional techniques presented include X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDS), secondary ion mass spectroscopy (SIMS) and Auger electron spectroscopy (AES). To highlight the current capabilities and applications of these techniques, case studies from recent literature are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beshkar F, Amiri O, Salehi Z (2017) Synthesis of ZnSnO3 nanostructures by using novel gelling agents and their application in degradation of textile dye. Sep Purif Technol 184:66–71

    Article  Google Scholar 

  2. Mohammadkhani A, Malboubi M, Anthony C, Jiang K (2011) Characterization of surface properties of ordered nanostructures using SEM stereoscopic technique. Microelectron Eng 88(8):2687–2690

    Article  Google Scholar 

  3. Buhr E, Senftleben N, Klein T, Bergmann D, Gnieser D, Frase CG, Bosse H (2009) Characterization of nanoparticles by scanning electron microscopy in transmission mode. Meas Sci Technol 20(8):84025

    Article  Google Scholar 

  4. O’Shea A, Wallace J, Hummel M, Strauss LH, Kidd TE (2013) Enhanced detection of nanostructures by scanning electron microscopy using insulating materials. Micron 52–53:57–61

    Article  Google Scholar 

  5. Villarrubia JS, Vladár AE, Ming B, Kline RJ, Sunday DF, Chawla JS, List S (2015) Scanning electron microscope measurement of width and shape of 10 nm patterned lines using a JMONSEL-modeled library. Ultramicroscopy 154:15–28

    Article  Google Scholar 

  6. Jusman Y, Ng SC, Abu Osman NA (2014) Investigation of CPD and HMDS sample preparation techniques for cervical cells in developing computer-aided screening system based on FE-SEM/EDX. Sci World J 2014:1–11

    Google Scholar 

  7. Vaughn DD, Hentz OD, Chen S, Wang D, Schaak RE (2012) Formation of SnS nanoflowers for lithium ion batteries. Chem Commun 48(45):5608

    Article  Google Scholar 

  8. Kang J-G, Park J-G, Kim D-W (2010) Superior rate capabilities of SnS nanosheet electrodes for Li ion batteries. Electrochem Commun 12(2):307–310

    Article  Google Scholar 

  9. Wang Y, Yang X, Wang Z, Lv X, Jia H, Kong J, Yu M (2016) CdS and SnS2 nanoparticles co-sensitized TiO2 nanotube arrays and the enhanced photocatalytic property. J Photochem Photobiol A Chem 325:55–61

    Article  Google Scholar 

  10. Kafashan H, Ebrahimi-Kahrizsangi R, Jamali-Sheini F, Yousefi R (2016) Effect of Al doping on the structural and optical properties of electrodeposited SnS thin films. Phys Status Solidi 213(5):1302–1308

    Article  Google Scholar 

  11. Kafashan H, Jamali-Sheini F, Ebrahimi-Kahrizsangi R, Yousefi R (2016) Influence of growth conditions on the electrochemical synthesis of SnS thin films and their optical properties. Int J Miner Metall Mater 23(3):348–357

    Article  Google Scholar 

  12. Chalapathi U, Poornaprakash B, Park S-H (2016) Chemically deposited cubic SnS thin films for solar cell applications. Sol Energy 139:238–248

    Article  Google Scholar 

  13. Sall T, Mollar M, Marí B (2016) Substrate influences on the properties of SnS thin films deposited by chemical spray pyrolysis technique for photovoltaic applications. J Mater Sci 51(16):7607–7613

    Article  Google Scholar 

  14. Li S, Gu X, Zhao Y, Qiang Y, Zhang S, Sui M (2016) Enhanced visible-light photocatalytic activity and stability by incorporating a small amount of MoS2 into Ag3PO4 microcrystals. J Mater Sci Mater Electron 27(1):386–392

    Article  Google Scholar 

  15. Kashid RV, Joag PD, Thripuranthaka M, Rout CS, Late DJ, More MA (2015) Stable field emission from layered MoS2 nanosheets in high vacuum and observation of 1/f noise. Nanomater Nanotechnol 5:1

    Article  Google Scholar 

  16. Chen YM, Yu XY, Li Z, Paik U, Lou XWD (2016) Hierarchical MoS2 tubular structures internally wired by carbon nanotubes as a highly stable anode material for lithium-ion batteries. Sci Adv 2(7):e1600021

    Article  Google Scholar 

  17. Wang S, Li X, Chen Y, Cai X, Yao H, Gao W, Zheng Y, An X, Shi J, Chen H (2015) A facile one-pot synthesis of a two-dimensional MoS2/Bi2S3 composite theranostic nanosystem for multi-modality tumor imaging and therapy. Adv Mater 27(17):2775–2782

    Article  Google Scholar 

  18. Wang Y, Yu L, Lou XWD (2016) Synthesis of highly uniform molybdenum-glycerate spheres and their conversion into hierarchical MoS2 hollow nanospheres for lithium-ion batteries. Angew Chem Int Ed 55(26):7423–7426

    Article  Google Scholar 

  19. Kafashan H, Azizieh M, Nasiri Vatan H (2016) Ultrasound-assisted electrodeposition of SnS: effect of ultrasound waves on the physical properties of nanostructured SnS thin films. J Alloys Compd 686:962–968

    Article  Google Scholar 

  20. Chu KKW, Chen JS, Der Chang L, Tsai JTH (2017) Graphene-edge probes for scanning tunneling microscopy. Optik (Stuttg) 130:976–980

    Article  Google Scholar 

  21. Krupski A (2011) Scanning tunnelling microscopy study of Au growth on Mo(110). Surf Sci 605(3–4):424–428

    Article  Google Scholar 

  22. Mehdinia A, Mohammadi AA, Davarani SSH, Banitaba MH (2011) Application of self-assembled monolayers in the preparation of solid-phase microextraction coatings. Chromatographia 74(5–6):421–427

    Article  Google Scholar 

  23. Huerta TF, Valenzuela J (2017) Growth of 4-aminothiophenol on iodine modified Au(100) studied by scanning tunneling microscopy. Surf Sci 655:17–24

    Article  Google Scholar 

  24. Koguchi K, Matsumoto T, Kawai T (1995) Atomic-scale images of the growth surface of Ca1-xSrxCuO2 thin films. Science 267(5194):71–73

    Article  Google Scholar 

  25. Jung HS, Kim HJ (2002) Initial stage of CdTe on Si(1 0 0) grown by MBE. Curr Appl Phys 2(5):389–391

    Article  Google Scholar 

  26. Seo J, Kim T-H, Kuk Y (2015) Visualization of the inverse layer-plus-island growth in Fe islands on W(110) substrate. Curr Appl Phys 15(9):1042–1046

    Article  Google Scholar 

  27. Chang YJ, Phark S (2017) Atomic-scale visualization of initial growth of perovskites on SrTiO 3 (001) using scanning tunneling microscope. Curr Appl Phys 17(5):640–656

    Article  Google Scholar 

  28. Rafati A, Gill P (2016) Ultrastructural characterizations of DNA nanotubes using scanning tunneling and atomic force microscopes. J Microsc Ultrastruct 4(1):1–5

    Article  Google Scholar 

  29. Chen X, Davies MC, Roberts CJ, Tendler SJB, Williams PM, Davies J, Dawkes AC, Edwards JC (1998) Interpretation of tapping mode atomic force microscopy data using amplitude-phase-distance measurements. Ultramicroscopy 75(3):171–181

    Article  Google Scholar 

  30. Ul Ahad I, Bartnik A, Fiedorowicz H, Kostecki J, Korczyc B, Ciach T, Brabazon D (2014) Surface modification of polymers for biocompatibility via exposure to extreme ultraviolet radiation. J Biomed Mater Res A 102(9):3298–3310

    Article  Google Scholar 

  31. Ahad IU, Butruk B, Ayele M, Budner B, Bartnik A, Fiedorowicz H, Ciach T, Brabazon D (2014) Extreme ultraviolet (EUV) surface modification of polytetrafluoroethylene (PTFE) for control of biocompatibility. Nucl Instrum Methods Phys Res Sect B 364:98–107

    Article  Google Scholar 

  32. Ahad IU, Budner B, Korczyc B, Fiedorowicz H, Bartnik A, Kostecki J, Burdyńska S, Brabazon D (2014) Polycarbonate polymer surface modification by extreme ultraviolet (EUV) radiation. Acta Phys Pol A 125(4):924–928

    Article  Google Scholar 

  33. Ahad I, Fiedorowicz H, Budner B, Kaldonski TJ, Vazquez M, Bartnik A, Brabazon D (2016) Extreme ultraviolet surface modification of polyethylene terephthalate (PET) for surface structuring and wettability control. Phys Pol A 129(2):241–243

    Article  Google Scholar 

  34. Ahad IU, Budner B, Fiedorowicz H, Bartnik A, Brabazon D (2013) Nitrogen doping in biomaterials by extreme ultraviolet ( EUV ) surface modification for biocompatibility control. Eur Cell Mater 26(Suppl. 626):145

    Google Scholar 

  35. Liberatore C, Bartnik A, Ahad IU, Toufarová M, Matulková I, Hájková V, Vyšín L, Burian T, Juha L, Pina L, Endo A, Mocek T (2015) EUV ablation: a study of the process. SPIE Optics + Optoelectron:951011

    Google Scholar 

  36. Fulwyler M, Hanley QS, Schnetter C, Young IT, Jares-Erijman EA, Arndt-Jovin DJ, Jovin TM (2005) Selective photoreactions in a programmable array microscope (PAM): Photoinitiated polymerization, photodecaging, and photochromic conversion. Cytometry A 67A(2):68–75

    Article  Google Scholar 

  37. Ilčíková M, Danko M, Doroshenko M, Best A, Mrlík M, Csomorová K, Šlouf M, Chorvát D, Koynov K, Mosnáček J (2016) Visualization of carbon nanotubes dispersion in composite by using confocal laser scanning microscopy. Eur Polym J 79:187–197

    Article  Google Scholar 

  38. Oyarzún DP, Pérez OEL, Teijelo ML, Zúñiga C, Jeraldo E, Geraldo DA, Arratia-Perez R (2016) Atomic force microscopy (AFM) and 3D confocal microscopy as alternative techniques for the morphological characterization of anodic TiO2 nanoporous layers. Mater Lett 165:67–70

    Article  Google Scholar 

  39. Beleites M, Matyssek C, Blaschek HH, Seifert G (2012) Near-field optical microscopy of femtosecond-laser-reshaped silver nanoparticles in dielectric matrix. Nanoscale Res Lett 7:2–5

    Article  Google Scholar 

  40. Bagga K, McCann R, Wang M, Stalcup a, Vázquez M, Brabazon D (2015) Laser assisted synthesis of carbon nanoparticles with controlled viscosities for printing applications. J Colloid Interface Sci 447:263–268

    Article  Google Scholar 

  41. Bagga K, McCann R, O’Sullivan F, Ghosh P, Krishnamurthy S, Stalcup A, Vázquez M, Brabazon D (2017) Nanoparticle functionalized laser patterned substrate: an innovative route towards low cost biomimetic platforms. RSC Adv 7(13):8060–8069

    Article  Google Scholar 

  42. Tomaszewska E, Soliwoda K, Kadziola K, Tkacz-Szczesna B, Celichowski G, Cichomski M, Szmaja W, Grobelny J (2013) Detection limits of DLS and UV-Vis spectroscopy in characterization of polydisperse nanoparticles colloids. J Nanomater 2013:60

    Article  Google Scholar 

  43. Takahashi K, Kato H, Saito T, Matsuyama S, Kinugasa S (2008) Precise measurement of the size of nanoparticles by dynamic light scattering with uncertainty analysis. Part Part Syst Charact 25(1):31–38

    Article  Google Scholar 

  44. Bhattacharjee S (2016) DLS and zeta potential—what they are and what they are not? J Control Release 235:337–351

    Article  Google Scholar 

  45. Nobbmann U, Morfesis A (2009) Light scattering and nanoparticles. Mater Today 12(5):52–54

    Article  Google Scholar 

  46. Freud PJ (2007) Nanoparticle sizing, dynamic light scatteringanalysis in the frequency spectrum mode. Application Note: Microtrach Inc.

    Google Scholar 

  47. Brar SK, Verma M (2011) Measurement of nanoparticles by light-scattering techniques. Trends Anal Chem 30(1):4–17

    Article  Google Scholar 

  48. Horechyy A, Nandan B, Shajkumar A, Formanek P, Paturej J, Stamm M, Fery A (2016) In-situ monitoring of silica shell growth on PS-b-P4VP micelles as templates using DLS. Polymer (United Kingdom) 107:485–491

    Google Scholar 

  49. Brundle CR, Evans CA, Wilson S (1992) Encyclopedia of materials characterization : surfaces, interfaces, thin films. Gulf Professional Publishing, Texas

    Google Scholar 

  50. Schroder DK (2005) Semiconductor material and device characterization, 3rd edn. John Wiley & Sons, New Jersey

    Book  Google Scholar 

  51. Wang ZL, Poncharal P, De Heer WA (2000) Measuring physical and mechanical properties of individual carbon nanotubes by in situ TEM. J Phys Chem Solid 61(7):1025–1030

    Article  Google Scholar 

  52. Lim SK, Brewster M, Qian F, Li Y, Lieber CM, Gradečak S (2009) Direct correlation between structural and optical properties of III−V nitride nanowire heterostructures with nanoscale resolution. Nano Lett 9(11):3940–3944

    Article  Google Scholar 

  53. Barbin V (2013) Application of cathodoluminescence microscopy to recent and past biological materials: a decade of progress. Mineral Petrol 107(3):353–362

    Article  Google Scholar 

  54. Bertram F, Müller M, Schmidt G, Veit P, Petzold S, Albert S, Bengoechea-Encabo AM, Sánchez-Garcia MÁ, Calleja E, Christen J (2016) Nanoscale imaging of structural and optical properties using helium temperature scanning transmission electron microscopy cathodoluminescence of nitride based nanostructures. Microsc Microanal 22(S3):600–601

    Article  Google Scholar 

  55. White E, Howkins A, Williams C (2015) Investigating the origin of luminescence in zinc oxide nanostructures with STEM-cathodoluminescence. Microsc Microanal 21(S3):1257–1258

    Article  Google Scholar 

  56. Hanna G, Glatzel T, Sadewasser S, Ott N, Strunk HP, Rau U, Werner JH (2006) Texture and electronic activity of grain boundaries in Cu(In,Ga)Se 2 thin films. Appl Phys A Mater Sci Process 82(Special Issue 1):1–7

    Article  Google Scholar 

  57. den Engelsen D, Fern GR, Ireland TG, Harris PG, Hobson PR, Lipman A, Dhillon R, Marsh PJ, Silver J (2016) Ultraviolet and blue cathodoluminescence from cubic Y2O3 and Y2O3:Eu3+ generated in a transmission electron microscope. J Mater Chem C 4(29):7026–7034

    Article  Google Scholar 

  58. Wu J, Helveg S, Ullmann S, Peng Z, Bell AT (2016) Growth of encapsulating carbon on supported Pt nanoparticles studied by in situ TEM. J Catal 338:295–304

    Article  Google Scholar 

  59. Buttry D (2016), High resolution TEM study on phase transformations in redox active silver nanoparticles. PRiME 2016/230th ECS Meet, 2–7 October 2016

    Google Scholar 

  60. Chee SW, Loh D, Baraissov Z, Matsudaira P, Mirsaidov U (2016) Hopping diffusion of gold nanoparticles observed with liquid cell TEM. Microsc Microanal 22(S3):750–751

    Article  Google Scholar 

  61. He C, Zhao N, Shi C, Li J, Li H (2008) Magnetic properties and transmission electron microscopy studies of Ni nanoparticles encapsulated in carbon nanocages and carbon nanotubes. Mater Res Bull 43(8):2260–2265

    Article  Google Scholar 

  62. Wang CM, Li X, Wang Z, Xu W, Liu J, Gao F, Kovarik L, Zhang JG, Howe J, Burton DJ, Liu Z, Xiao X, Thevuthasan S, Baer DR (2012) In situ TEM investigation of congruent phase transition and structural evolution of nanostructured silicon/carbon anode for lithium ion batteries. Nano Lett 12(3):1624–1632

    Article  Google Scholar 

  63. Huiqun C, Meifang Z, Yaogang L (2006) Decoration of carbon nanotubes with iron oxide. J Solid State Chem 179(4):1208–1213

    Article  Google Scholar 

  64. Salvetat J-P, Bonard J-M, Thomson NH, Kulik AJ, Forró L, Benoit W, Zuppiroli L (1999) Mechanical properties of carbon nanotubes. Appl Phys A 69(3):255–260

    Article  Google Scholar 

  65. Jose MV, Steinert BW, Thomas V, Dean DR, Abdalla MA, Price G, Janowski GM (2007) Morphology and mechanical properties of Nylon 6/MWNT nanofibers. Polymer (Guildf) 48(4):1096–1104

    Article  Google Scholar 

  66. Musil CR, Bartelt JL, Melngailis J (1986) Focused ion beam microsurgery for electronics. IEEE Electron Device Lett 7(5):285–287

    Article  Google Scholar 

  67. Boit C (2005) New physical techniques for IC functional analysis of on-chip devices and interconnects. Appl Surf Sci 252(1):18–23

    Article  Google Scholar 

  68. Schlangen R, Kerst U, Boit C, Malik T, Jain R, Lundquist T (1964) Microelectronics and reliability, vol 47. Pergamon Press, Oxford

    Google Scholar 

  69. Stanishevsky A (2014) Focused ion beam nanofabircation. In: Nalwa HS (ed) Encyclopedia of nanoscience and nanotechnology, vol 3. American Scientific Publishers, Stevenson Ranch, CA, pp 469–483

    Google Scholar 

  70. Wierzbicki R, Købler C, Jensen MRB, Łopacińska J, Schmidt MS, Skolimowski M, Abeille F, Qvortrup K, Mølhave K (2013) Mapping the complex morphology of cell interactions with nanowire substrates using FE-SEM. Plus One 8(1):e53307. Editor: Elena A. Rozhkova

    Article  Google Scholar 

  71. Jenkins TE (1998) Semiconductor science; growth and characterisation techniques. Harlow, Essex, Prentice Hall

    Google Scholar 

  72. Liu J, Khan U, Coleman J, Fernandez B, Rodriguez P, Naher S, Brabazon D (2016) Graphene oxide and graphene nanosheet reinforced aluminium matrix composites: powder synthesis and prepared composite characteristics. Mater Des 94:87–94

    Article  Google Scholar 

  73. Wang Z, Shu J, Zhu Q, Cao B, Chen H (2016) Graphene-nanosheet-wrapped LiV3O8 nanocomposites as high performance cathode materials for rechargeable lithium-ion batteries. J Power Sources 307:426–434

    Article  Google Scholar 

  74. Lu X, Dou H (2016) Simple and mass-produced mechanochemical preparation of graphene nanosheet/polyaniline composite assisted with bifunctional ionic liquid. Funct Mater Lett 9(3):1650041

    Article  Google Scholar 

  75. Feng X, Xing W, Song L, Hu Y, Liew K (2015) TiO2 loaded on graphene nanosheet as reinforcer and its effect on the thermal behaviors of poly (vinyl chloride) composites. Chem Eng J 260:524–531

    Article  Google Scholar 

  76. Qiu B, Zhou Y, Ma Y, Yang X, Sheng W, Xing M (2015) Facile synthesis of the Ti3+ self-doped TiO2-graphene nanosheet composites with enhanced photocatalysis. Sci Rep 5:8591

    Article  Google Scholar 

  77. Fu S, Li N, Wang K, Zhang Q, Fu Q (2015) Reduction of graphene oxide with the presence of polypropylene micro-latex for facile preparation of polypropylene/graphene nanosheet composites. Colloid Polym Sci 293:1495–1503

    Article  Google Scholar 

  78. Haul R (1982) S. J. Gregg, K. S. W. Sing: Adsorption, surface area and porosity. 2. Auflage, Academic Press, London 1982. 303 Seiten, Preis: $ 49.50. Ber Bunsen Phys Chem 86(10):957–957

    Article  Google Scholar 

  79. Webb PA, Orr C, Micromeritics Instrument Corporation (1997) Analytical methods in fine particle technology. Micromeritics Instrument Corp, Norcross, GA

    Google Scholar 

  80. Terock M, Konrad CH, Popp R, Völkl R, Yang F, McComb DW, Mills MJ, Glatzel U (2016) Tailored platinum-nickel nanostructures on zirconia developed by metal casting, internal oxidation and dealloying. Corros Sci 112:246–254

    Article  Google Scholar 

  81. Seraji MM, Ghafoorian NS, Bahramian AR (2016) Investigation of microstructure and mechanical properties of novolac/silica and C/SiO2/SiC aerogels using mercury porosimetry method. J Non Cryst Solids 435:1–7

    Article  Google Scholar 

  82. Goldstein J (2003) Scanning electron microscopy and X-ray microanalysis. Kluwer Academic/Plenum Publishers, New York

    Book  Google Scholar 

  83. Lifshin E, Wiley InterScience (Online service) (1999) X-ray characterization of materials. Wiley-VCH, New York

    Book  Google Scholar 

  84. Khan MA, Member S, Zheng R (2016) Nanostructural analysis of CMOS-MEMS-based digital microphone for performance optimization. IEEE Trans Nanotechnol 15(6):849–855

    Article  Google Scholar 

  85. Dastkhoon M, Ghaedi M, Asfaram A, Goudarzi A, Mohammadi SM, Wang S (2017) Improved adsorption performance of nanostructured composite by ultrasonic wave: optimization through response surface methodology, isotherm and kinetic studies. Ultrason Sonochem 37:94–105

    Article  Google Scholar 

  86. Balow R, Tomlinson E, Abu-Omar M (2016) Solution-based synthesis and characterization of earth abundant Cu 3 (As, Sb) Se 4 nanocrystal alloys: towards scalable room-temperature thermoelectric devices. J Mater Chem A 4(6):2198–2204

    Article  Google Scholar 

  87. Di Girolamo G, Brentari A, Serra E (2016) Some recent findings on the use of SEM-EDS in microstructural characterisation of as-sprayed and thermally aged porous coatings: a short review. AIMS Mater Sci 3(2):404–424

    Article  Google Scholar 

  88. Edalati K, Emami H, Ikeda Y, Iwaoka H, Tanaka I (2016) New nanostructured phases with reversible hydrogen storage capability in immiscible magnesium–zirconium system produced by high-pressure torsion. Acta Mater 108:293–303

    Article  Google Scholar 

  89. Dong A, Ye X, Li H, Zhang Y, Wang G (2016) Micro/nanostructured hydroxyapatite structurally enhances the immobilization for Cu and Cd in contaminated soil. J Soil Sediment 16(8):2030–2040

    Article  Google Scholar 

  90. Liu Y, Zhu G, Gao J, Hojamberdiev M, Zhu R (2017) Enhanced photocatalytic activity of Bi 4 Ti 3 O 12 nanosheets by Fe 3+-doping and the addition of Au nanoparticles: Photodegradation of Phenol and bisphenol A. Appl Catal B 200:72–82

    Article  Google Scholar 

  91. Fan X, Cui Y, Liu P, Gou L, Xu L, Li D (2016) Electrochemical construction of three-dimensional porous Mn 3 O 4 nanosheet arrays as an anode for the lithium ion battery. Phys Chem Chem 18(32):22224–22234

    Article  Google Scholar 

  92. Sasaki K, Matsubara K, Kawamura S, Saito K (2016) Synthesis of copper nanoparticles within the interlayer space of titania nanosheet transparent films. J Mater Chem C 4(7):1476–1481

    Article  Google Scholar 

  93. Kim S, Yook S, Kannan A, Kim S, Park C (2016) Enhancement of the electrochemical performance of silicon anodes through alloying with inert metals and encapsulation by graphene nanosheets. Electrochimica 209:278–284

    Article  Google Scholar 

  94. Mehraj O, Pirzada B, Mir N, Khan M, Sabir S (2016) A highly efficient visible-light-driven novel pn junction Fe2O3/BiOI photocatalyst: surface decoration of BiOI nanosheets with Fe2O3 nanoparticles. Appl Surf Sci 387:642–651

    Article  Google Scholar 

  95. Pardo T, Martínez-Fernández D, de la Fuente C (2016) Maghemite nanoparticles and ferrous sulfate for the stimulation of iron plaque formation and arsenic immobilization in Phragmites australis. Environ Pollut 219:296–304

    Article  Google Scholar 

  96. Landers J, Colon-Ortiz J, Zong K (2016) In situ growth and characterization of metal oxide nanoparticles within polyelectrolyte membranes. Angew Chem Int Ed 55(38):11522–11527

    Article  Google Scholar 

  97. Souza V, Scholten J, Weibel D (2016) Hybrid tantalum oxide nanoparticles from the hydrolysis of imidazolium tantalate ionic liquids: efficient catalysts for hydrogen generation from ethanol/water solutions. J Mater Chem A 4(19):7469–7475

    Article  Google Scholar 

  98. Li X, Niu Z, Jiang J, Ai L (2016) Cobalt nanoparticles embedded in porous N-rich carbon as an efficient bifunctional electrocatalyst for water splitting. J Mater Chem A 4(9):3204–3209

    Article  Google Scholar 

  99. Matthew J (2004) Surface analysis by Auger and x-ray photoelectron spectroscopy. D. Briggs and J. T. Grant (eds). IMPublications, Chichester, UK and Surface Spectra, Manchester, UK, 2003. 900 pp., ISBN 1-901019-04-7, 900 pp. Surf Interface Anal 36(13):1647–1647

    Article  Google Scholar 

  100. Gao X-L, Pan J-S, Hsu C-Y (2006) Laser-fluoride effect on root demineralization. J Dent Res 85(10):919–923

    Article  Google Scholar 

  101. Balter V, Reynard B (2008) Secondary ionization mass spectrometry imaging of dilute stable strontium labeling in dentin and enamel. Bone 42(1):229–234

    Article  Google Scholar 

  102. Qian W, Murakami M, Ichikawa Y, Che Y (2011) Highly efficient and controllable PEGylation of gold nanoparticles prepared by femtosecond laser ablation in water. J Phys Chem C 115(47):23293–23298

    Article  Google Scholar 

  103. Watts JF, Wolstenholme J (2003) An introduction to surface analysis by XPS and AES. J. Wiley, New York

    Book  Google Scholar 

  104. Lee PL, Chen BC, Gollavelli G, Shen SY, Yin YS, Lei SL, Jhang CL, Lee WR, Ling YC (2014) Development and validation of TOF-SIMS and CLSM imaging method for cytotoxicity study of ZnO nanoparticles in HaCaT cells. J Hazard Mater 277:3–12

    Article  Google Scholar 

  105. Rades S, Wirth T, Unger W (2014) Investigation of silica nanoparticles by Auger electron spectroscopy (AES). Surf Interface Anal 46(10–11):952–956

    Article  Google Scholar 

  106. Sharma H, Bhardwaj M, Kour M, Paul S (2017) Highly efficient magnetic Pd (0) nanoparticles stabilized by amine functionalized starch for organic transformations under mild conditions. Mol Catal 435:58–68

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dermot Brabazon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Freeland, B., Ahad, I.U., Foley, G., Brabazon, D. (2018). Advanced Characterisation Techniques for Nanostructures. In: Jackson, M., Ahmed, W. (eds) Micro and Nanomanufacturing Volume II. Springer, Cham. https://doi.org/10.1007/978-3-319-67132-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67132-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67130-7

  • Online ISBN: 978-3-319-67132-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics