Library Subscription: Guest
Plasma Medicine

Published 4 issues per year

ISSN Print: 1947-5764

ISSN Online: 1947-5772

SJR: 0.216 SNIP: 0.263 CiteScore™:: 1.4 H-Index: 24

Indexed in

The Potential Use of a Cold Atmospheric Plasma Jet for Decontamination of Hospital Surfaces. A Pilot Study

Volume 11, Issue 1, 2021, pp. 15-30
DOI: 10.1615/PlasmaMed.2021037267
Get accessDownload

ABSTRACT

Hospital surfaces are a source of potential infection due to contamination by microorganisms such as bacteria and viruses. Bacterial biofilms are of particular importance, due to their persistence in the hospital environment. Cold atmospheric pressure plasma (CAPP) is a novel potential method of hospital surface decontamination. In this study, we aimed to show the potential use of a CAPP jet for hospital decontamination. Bacterial biofilms were grown on common hospital surface materials and treated with an air-driven CAPP jet. Viable bacteria in treated biofilms were measured. Confocal microscopy and staining were used to gather images of CAPP-treated biofilms. The effect of CAPP inactivation was also assessed alongside the use of a detergent. CAPP inactivated clinically relevant bacteria both in planktonic and biofilm structures. A 90 s CAPP treatment led to an average of 82% decrease in Escherichia coli (E. coli) and 70% decrease in methicillin-resistant Staphylococcus aureus (MRSA) biofilm viability grown on polysterene. Confocal microscopy was used to confirm CAPP-induced inactivation of bacterial cells within mature growth on glass. CAPP treatment was also compared to treatment with detergent commonly used in hospitals. It was found that biofilm inactivation was greatest when treated with both detergent and CAPP. When in combination with detergent, viability of E. coli and MRSA biofilms grown on polysterene were decreased by 97% and 94%, respectively. A CAPP jet was shown to inactivate biofilms on hospital surfaces, particularly when used alongside detergent. This may suggest a role for CAPP in hospital decontamination.

REFERENCES
  1. Thampi N, Showler A, Burry L, Bai AD, Steinberg M, Ricciuto DR, Bell CM, Morris AM. Multicenter study of health care cost of patients admitted to hospital with Staphylococcus aureus bacteremia: Impact of length of stay and intensity of care. Am J Infect Control. 2015;43(7):739-44. doi: 10.1016/j. ajic.2015.01.031.

  2. Manoukian S, Stewart S, Dancer S, Graves N, Mason H, McFarlandA, Robertson C, Reilly J. Estimating excess length of stay due to healthcare-associated infections: A systematic review and meta-analysis of statistical methodology. J Hosp Infect. 2018;100(2):222-35. doi: 10.1016/j.jhin.2018.06.003.

  3. The European Centre for Disease Prevention and Control. Point prevalence survey of healthcare-associated infections and antimicrobial use in European acute care hospitals - ECDC PPS validation protocol version 3.1.2., (n.d.). Available from: https://www.ecdc.europa.eu/en/publications-data/point-prevalence-survey-healthcare-associated-infections-and-antimicrobial-use-4#copy-to-clip-board (accessed March 23, 2020).

  4. Dancer SJ. Controlling hospital-acquired infection: Focus on the role ofthe environment and new technologies for decontamination. Clin Microbiol Rev. 2014;27(4):665-90. doi: 10.1128/cmr.00020-14.

  5. Rutala WA, Kanamori H, Gergen MF, Knelson LP, Sickbert-Bennett EE, Chen LF, Anderson DJ, Sexton DJ, Weber DJ. Enhanced disinfection leads to reduction of microbial contamination and a decrease in patient colonization and infection. Infect Control Hosp Epidemiol. 2018;39(9):1118.

  6. Dancer SJ, White LF, Lamb J, Girvan EK, Robertson C. Measuring the effect of enhanced cleaning in a UK hospital: A prospective cross-over study. BMC Med. 2009;7:28. doi: 10.1186/ 1741-7015-7-28.

  7. Wojgani H, Kehsa C, Cloutman-Green E, Gray C, Gant V, Klein N. Hospital door handle design and their contamination with bacteria: a real life observational study. Are we pulling against closed doors? PLoS One. 2012;7(10):e40171. doi: 10.1371/journal.pone.0040171.

  8. Jinadatha C, Villamaria FC, Coppin JD, Dale CR, Williams MD, Whitworth R, Stibich M. Interaction of healthcare worker hands and portable medical equipment: A sequence analysis to show potential transmission opportunities. BMC Infect Dis. 2017;17(1):800. doi: 10.1186/s12879-017-2895-6.

  9. Adams CE, Smith J, Watson V, Robertson C, Dancer SJ. Examining the association between surface bioburden and frequently touched sites in intensive care. J Hosp Infect. 2017;95(1):76-80. doi: 10.1016/j.jhin.2016.11.002.

  10. McDermott H, Skally M, O'Rourke, J, Humphreys H, Fitzgerald-Hughes D. Near-patient environmental contamination of an intensive care unit with Vancomycin-resistant Enterococci (VRE) and extended-spectrum beta-lactamase-producing Enterobacteriaceae (ESBL-E) before and after the introduction of chlorhexidine bathing for patients. Infect Control Hosp Epidemiol. 2018;39(9):1131-2. doi: 10.1017/ice.2018.146.

  11. Dancer SJ. Dos and don'ts for hospital cleaning. Curr Opin Infect Dis. 2016;29(4):415-23. doi: 10.1097/QC0.0000000000000289.

  12. Shimoda T, Okubo T, Enoeda Y, Yano R, Nakamura S, Thapa J, Yamaguchi H. Effect of thermal control of dry fomites on regulating the survival of human pathogenic bacteria responsible for nosocomial infections. PLoS One. 2019;14(12):e0226952. doi: 10.1371/journal.pone.0226952.

  13. Kramer A, Schwebke I, Kampf G. How long do nosocomial pathogens persist on inanimate surfaces? A systematic review. BMC Infect Dis. 2006;6:130. doi: 10.1186/1471-2334-6-130.

  14. Esteves DC, Pereira VC, Souza JM, Keller R, Simoes RD, Winkelstroter Eller LK, Rodrigues MVP. Influence of biological fluids in bacterial viability on different hospital surfaces and fomites. Am J Infect Control. 2016;44(3):311-4. doi: 10.1016/j.ajic.2015.09.033.

  15. Mah TF, O'Toole GA. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol. 2001;9(1):34-9. doi: 10.1016/s0966-842x(00)01913-2.

  16. Almatroudi A, Gosbell IB, Hu H, Jensen SO, Espedido BA, Tahir S, Glasbey TO, Legge P, Whiteley G, Deva A, Vickery K. Staphylococcus aureus dry-surface biofilms are not killed by sodium hypochlorite: Implications for infection control. J Hosp Infect. 2016;93(3):263-70. doi: 10.1016/j. jhin.2016.03.020.

  17. Hu H, Johani K, Gosbell IB, Jacombs ASW, Almatroudi A, Whiteley GS, Deva AK, Jensen S, Vickery K. Intensive care unit environmental surfaces are contaminated by multidrug-resistant bacteria in bio- films: Combined results of conventional culture, pyrosequencing, scanning electron microscopy, and confocal laser microscopy. J Hosp Infect. 2015;91(1):35-44. doi: 10.1016/j.jhin.2015.05.016.

  18. Ledwoch K, Dancer SJ, Otter JA, Kerr K, Roposte D, Rushton L, Weiser R, Mahenthiralingam E, Muir DD, Maillard JY. Beware biofilm! Dry biofilms containing bacterial pathogens on multiple healthcare surfaces; a multi-centre study. J Hosp Infect. 2018;100(3):e47-e56. doi: 10.1016/j.jhin.2018.06.028.

  19. Weber DJ, Kanamori H, Rutala WA. "No touch" technologies for environmental decontamination: Focus on ultraviolet devices and hydrogen peroxide systems. Curr Opin Infect Dis. 2016;29(4):424-31. doi: 10.1097/QTO.0000000000000284.

  20. Weber DJ, Rutala WA, Anderson DJ, Chen LF, Sickbert-Bennett EE, Boyce JM. Effectiveness of ultraviolet devices and hydrogen peroxide systems for terminal room decontamination: Focus on clinical trials. Am J Infect Control. 2016;44(5 Suppl):e77-84. doi: 10.1016/j.ajic.2015.11.015.

  21. Lu H, Patil S, Keener KM, Cullen PJ, Bourke P. Bacterial inactivation by high-voltage atmospheric cold plasma: Influence of process parameters and effects on cell leakage and DNA. J Appl Microbiol. 2014;116(4):784-94. doi: 10.1111/jam.12426.

  22. Suwal S, Coronel-Aguilera CP, Auer J, Applegate B, Garner AL, Huang JY. Mechanism characterization of bacterial inactivation of atmospheric air plasma gas and activated water using bioluminescence technology. Innov Food Sci Emerg Technol. 2019;53:18-25. doi: 10.1016/j.ifset.2018.01.007.

  23. Perni S, Liu DW, Shama G, Kong MG. Cold atmospheric plasma decontamination of the pericarps of fruit. J Food Prot. 2008;71(2):302-8. doi: 10.4315/0362-028X-71.2.302.

  24. Brun P, Bernabe G, Marchiori C, Scarpa M, Zuin M, Cavazzana R, Zaniol B, Martines E. Antibacterial efficacy and mechanisms of action of low power atmospheric pressure cold plasma: Membrane permeability, biofilm penetration and antimicrobial sensitization. J Appl Microbiol. 2018;125(2):398-408. doi: 10.1111/jam.13780.

  25. Imlay JA. The molecular mechanisms and physiological consequences of oxidative stress: Lessons from a model bacterium. Nat Rev Microbiol. 2013;11(7):443-54. doi: 10.1038/nrmicro3032.

  26. Slauch JM. How does the oxidative burst of macrophages kill bacteria? Still an open question. Mol Microbiol. 2011;80(3):580-3. doi: 10.1111/j.1365-2958.2011.07612.x.

  27. Dedon PC, Tannenbaum SR. Reactive nitrogen species in the chemical biology of inflammation. Arch Biochem Biophys. 2004;423(1):12-22. doi: 10.1016/j.abb.2003.12.017.

  28. Laroussi M. Cold plasma in medicine and healthcare: The new frontier in low temperature plasma applications. Front Phys. 2020;8:74. doi: 10.3389/fphy.2020.00074.

  29. Sun Y, Yu S, Sun P, Wu H, Zhu W, Liu W, Zhang J, Fang J, Li R. Inactivation of Candida biofilms by non-thermal plasma and its enhancement for fungistatic effect of antifungal drugs. PLoS One. 2012;7(7):e40629. doi: 10.1371/journal.pone.0040629.

  30. Delben JA, Zago CE, Tyhovych N, Duarte S, Vergani CE. Effect of atmospheric-pressure cold plasma on pathogenic oral biofilms and in vitro reconstituted oral epithelium. PLoS One. 2016;11(5):e0155427. doi: 10.1371/journal.pone.0155427.

  31. Puligundla P, Mok C, Pradeep P, Chulkyoon M. Non-thermal plasmas (NTPs) for inactivation of viruses in abiotic environment. 2016. Available from: https://www.researchgate.net/publication/304639945 (accessed June 25, 2020).

  32. Flynn PB, Higginbotham S, Alshraiedeh NH, Gorman SP, Graham WG, Gilmore BF. Bactericidal efficacy of atmospheric pressure non-thermal plasma (APNTP) against the ESKAPE pathogens. Int J Antimicrob Agents. 2015;46(1):101-7. doi: 10.1016/j.ijantimicag.2015.02.026.

  33. Niemira BA, Boyd G, Sites J. Cold plasma inactivation of Escherichia coli O157:H7 biofilms. Front Sustain Food Syst. 2018;2:47. doi: 10.3389/fsufs.2018.00047.

  34. O'Connor N, Cahill O, Daniels S, Galvin S, Humphreys H. Cold atmospheric pressure plasma and decontamination. Can it contribute to preventing hospital-acquired infections? J Hosp Infect. 2014;88(2):59-65. doi: 10.1016/j.jhin.2014.06.015.

  35. Bekeschus S, Favia P, Robert E, von Woedtke T. White paper on plasma for medicine and hygiene: Future in plasma health sciences. Plasma Process Polym. 2019;16(1):1800033. doi: 10.1002/ ppap.201800033.

  36. Gilmore BF, Flynn PB, O'Brien S, Hickok N, Freeman T, Bourke P. Cold plasmas for biofilm control: Opportunities and challenges. Trends Biotechnol. 2018;36(6):627-38. doi: 10.1016/j. tibtech.2018.03.007.

  37. Cahill OJ, Claro T, O'Connor N, Cafolla AA, Stevens NT, Daniels S, Humphreys H. Cold air plasma to decontaminate inanimate surfaces of the hospital environment. Appl Environ Microbiol. 2014;80(6):2004-10. doi: 10.1128/aem.03480-13.

  38. Otter JA, Vickery K, Walker JT, deLancey Pulcini E, Stoodley P, Goldenberg SD, Salkeld JA, Chewins J, Yezli S, Edgeworth JD. Surface-attached cells, biofilms and biocide susceptibility: Implications for hospital cleaning and disinfection. J Hosp Infect. 2015;89(1):16-27. doi: 10.1016/j. jhin.2014.09.008.

  39. Peters A, Otter J, Moldovan A, Parneix P, Voss A, Pittet D. Keeping hospitals clean and safe without breaking the bank; summary of the healthcare cleaning forum 2018. Antimicrob Resist Infect Control. 2018;7:132. doi: 10.1186/s13756-018-0420-3.

  40. Edelblute CM, Malik MA, Heller LC. Surface-dependent inactivation of model microorganisms with shielded sliding plasma discharges and applied air flow. Bioelectrochemistry. 2015;103:22-7. doi: 10.1016/j.bioelechem.2014.08.013.

  41. Sharma M, Hudson JB. Ozone gas is an effective and practical antibacterial agent. Am J Infect Control. 2008;36(8):559-63. doi: 10.1016/j.ajic.2007.10.021.

  42. Health and Safety Executive. EH40/2005 workplace exposure limits. 4th ed. London: The Stationery Office; 2007.

  43. Dancer SJ, Kramer A. Four steps to clean hospitals: LOOK, PLAN, CLEAN and DRY J Hosp Infect. 2019;103(1):e1-e8. doi: 10.1016/j.jhin.2018.12.015.

  44. Mahasneh A, Darby M, Tolle SL, Hynes W, Laroussi M, Karakas E. Inactivation of Porphyromonas gingivalis by low-temperature atmospheric pressure plasma. Plasma Med. 2011;1(3-4):191-204.

  45. Russell AD. Mechanisms of bacterial insusceptibility to biocides. Am J Infect Control. 2001;29(4):259-61. doi: 10.1067/mic.2001.115671.

  46. Han L, Patil S, Boehm D, Milosavljevic V, Cullen PJ, Bourke P. Mechanisms of inactivation by high-voltage atmospheric cold plasma differ for Escherichia coli and Staphylococcus aureus. Appl Env Microbiol.2016;82(2):450-8. doi: 10.1128/aem.02660-15.

  47. Mai-Prochnow A, Clauson M, Hong J, Murphy AB. Gram positive and Gram negative bacteria differ in their sensitivity to cold plasma. Sci Rep. 2016;6:38610. doi: 10.1038/srep38610.

  48. Mai-Prochnow A, Murphy AB, McLean KM, Kong MG, Ostrikov K. Atmospheric pressure plasmas: Infection control and bacterial responses. Int J Antimicrob Agents. 2014;43(6):508-17. doi: 10.1016/j. ijantimicag.2014.01.025.

  49. Farias PG, Gama F, Reis D, Alarico S, Empadinhas N, Martins JC, de Almeida AF, Morais PV. Hospital microbial surface colonization revealed during monitoring of Klebsiella spp., Pseudomonas aeruginosa, and non-tuberculous mycobacteria. Antonie Van Leeuwenhoek. 2017;110(7):863-76. doi: 10.1007/s10482-017-0857-z.

  50. Chowdhury D, Rahman A, Hu H, Jensen SO, Deva AK, Vickery K. Effect of disinfectant formulation and organic soil on the efficacy of oxidizing disinfectants against biofilms. J Hosp Infect. 2019;103(1):e33-e41. doi: 10.1016/j.jhin.2018.10.019.

CITED BY
  1. Fallon Muireann, Conway James , Kennedy Sarah , Kumar Sharath , Daniels Stephen , Humphreys Hilary , The Effect of Cold Plasma Operating Parameters on the Production of Reactive Oxygen and Nitrogen Species and the Resulting Antibacterial and Antibiofilm Efficiency , Plasma Medicine, 12, 1, 2022. Crossref

  2. Das Sarthak, Gajula Veda Prakash, Mohapatra Sarita, Singh Gagandeep, Kar Satyananda, Role of cold atmospheric plasma in microbial inactivation and the factors affecting its efficacy, Health Sciences Review, 4, 2022. Crossref

  3. Fallon Muireann, Kennedy Sarah, Daniels Stephen, Humphreys Hilary, Technologies to decontaminate bacterial biofilm on hospital surfaces: a potential new role for cold plasma?, Journal of Medical Microbiology , 71, 10, 2022. Crossref

Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections Prices and Subscription Policies Begell House Contact Us Language English 中文 Русский Português German French Spain