Skip to main content
Log in

Incorporation of SiC Ceramic Nanoparticles into the Aluminum Matrix by a Novel Method: Production of a Metal Matrix Composite

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

SiC ceramic nanoparticles were incorporated into the A356 aluminum matrix with different compositions using a combination of stir casting and semisolid extrusion. The microstructure and mechanical properties of the produced nanocomposites were evaluated. The results showed that the presence of Nickel acts as an appropriate metallic carrier for SiC nanoparticles, which causes uniform dispersion and spherical grains. Consequently, the coexistence of SiC nanoparticles and Nickel resulted in UTS of above 304 MPa and elongation of 5.8%. However, the addition of Titanium caused the formation of flake-like intermetallics, which decreased the elongation of the nanocomposites. The method introduced in this study for the incorporation of SiC ceramic nanoparticles can be used as a promising process instead of conventional methods, which are expensive and time-consuming.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. P. Hariharasakthisudhan, S. Jose, Influence of metal powder premixing on mechanical behavior of dual reinforcement (Al2O3 (μm)/Si3N4 (nm)) in AA6061 matrix. J. Alloy. Compd. 731, 100–110 (2018)

    Article  CAS  Google Scholar 

  2. R. Purohit, M.M.U. Qureshi, B. Kumar Dandoutiya, Study of tribological properties of Al–Al2O3 nanocomposites developed through ultrasonic assisted stir casting process. Mater. Today: Proc 5(9), 20492–20499 (2018)

    CAS  Google Scholar 

  3. S.O.R. Sheykholeslami, R.T. Mousavian, D. Brabazon, Corrosion behaviour of rolled A356 matrix composite reinforced with ceramic particles. Int. J. Mater. Res. 107(12), 1100–1111 (2016)

    Article  CAS  Google Scholar 

  4. D. Chaira, S. Sangal, B. Mishra, Synthesis of aluminium–cementite metal matrix composite by mechanical alloying. Mater. Manuf. Process. 22(4), 492–496 (2007)

    Article  CAS  Google Scholar 

  5. P. Padhi, K.N. Kumar, S. Ghosh, H. Vishwanatha, S. Panigrahi, S. Ghosh, Modeling and experimental validation of deagglomeration of ultrafine nanoparticles in liquid Al during noncontact ultrasonic casting of Al–Al2O3 nanocomposite. Mater. Manuf. Process. 31(12), 1589–1596 (2016)

    Article  CAS  Google Scholar 

  6. E. Hajjari, M. Divandari, H. Arabi, Effect of applied pressure and nickel coating on microstructural development in continuous carbon fiber-reinforced aluminum composites fabricated by squeeze casting. Mater. Manuf. Process. 26(4), 599–603 (2011)

    Article  CAS  Google Scholar 

  7. S. Ghosh, S. Naskar, A. Basumallick, Effect of hot rolling on the properties of in situ Ti-aluminide and alumina-reinforced aluminum matrix composite. Mater. Manuf. Process. 22(6), 683–686 (2007)

    Article  CAS  Google Scholar 

  8. M. Emamy, N. Nemati, A. Heidarzadeh, The influence of Cu rich intermetallic phases on the microstructure, hardness and tensile properties of Al–15% Mg2Si composite. Mater. Sci. Eng. A 527(12), 2998–3004 (2010)

    Article  CAS  Google Scholar 

  9. A. Heidarzadeh, M. Emamy, A. Rahimzadeh, R. Soufi, D.S.B. Heidary, S. Nasibi, The effect of copper addition on the fluidity and viscosity of an Al–Mg–Si alloy. J. Mater. Eng. Perform 23(2), 469–476 (2014)

    Article  CAS  Google Scholar 

  10. Y. Xuan, L. Nastac, TMS 2017 146th Annual Meeting & Exhibition Supplemental Proceedings (Springer, New York, 2017), pp. 297–303

    Book  Google Scholar 

  11. F. Qiu, X. Gao, J. Tang, Y.-Y. Gao, S.-L. Shu, X. Han, Q. Li, Q.-C. Jiang, Microstructures and tensile properties of Al–Cu matrix composites reinforced with nano-sized SiCp fabricated by semisolid stirring process. Metals 7(2), 49 (2017)

    Article  CAS  Google Scholar 

  12. S. Pourhosseini, H. Beygi, S.A. Sajjadi, Effect of metal coating of reinforcements on the microstructure and mechanical properties of Al–Al2O3 nanocomposites. Mater. Sci. Technol. 34, 1–8 (2017)

    Google Scholar 

  13. R.T. Mousavian, R.A. Khosroshahi, S. Yazdani, D. Brabazon, Manufacturing of cast A356 matrix composite reinforced with nano-to micrometer-sized SiC particles. Rare Met. 36(1), 46–54 (2017)

    Article  CAS  Google Scholar 

  14. S.V. Siva, R. Ganguly, G. Srinivasarao, K. Sahoo, Machinability of aluminum metal matrix composite reinforced with in situ ceramic composite developed from mines waste colliery shale. Mater. Manuf. Process. 28(10), 1082–1089 (2013)

    Article  CAS  Google Scholar 

  15. A.S. Verma, D. Kumar, A.K. Dubey, A review of an innovative concept to increase the toughness of the ceramics by piezoelectric secondary phases. Ceram. Int. 44(14), 16119–16127 (2018)

    Article  CAS  Google Scholar 

  16. H.K. Issa, A. Taherizadeh, A. Maleki, A. Ghaei, Development of an aluminum/amorphous nano-SiO2 composite using powder metallurgy and hot extrusion processes. Ceram. Int. 43(17), 14582–14592 (2017)

    Article  CAS  Google Scholar 

  17. A. Zulfia, R.P. Maulana, F. Robby, M. Kirman, A. Sukarto, Effects of Al2O3 np and Mg addition on the properties of the Al–Zr–Ce nanocomposite produced by STIR casting, as aluminium conductor. Powder Metall. Met. Ceram. 54(9–10), 534–542 (2016)

    Article  CAS  Google Scholar 

  18. H. Abdizadeh, R. Ebrahimifard, M.A. Baghchesara, Investigation of microstructure and mechanical properties of nano MgO reinforced Al composites manufactured by stir casting and powder metallurgy methods: A comparative study. Compos. B Eng. 56, 217–221 (2014)

    Article  CAS  Google Scholar 

  19. M. Singla, D.D. Dwivedi, L. Singh, V. Chawla, Development of aluminium based silicon carbide particulate metal matrix composite. J. Miner. Mater. Charact. Eng. 8(06), 455 (2009)

    Google Scholar 

  20. W.Y. Zhang, Y.H. Du, P. Zhang, Y.J. Wang, Air-isolated stir casting of homogeneous Al–SiC composite with no air entrapment and Al4C3. J. Mater. Process. Technol. 271, 226–236 (2019)

    Article  CAS  Google Scholar 

  21. A. Muralitharan, K. Madhavan, R. Srinivasan, V. Ramamoorthi, S. Pichumani, A Review on Mechanical Properties, Tribological, Corrosion, and Weldability Studies of Aluminium Composites Processed Using Stir Casting and ECAP Methods, Advances in Manufacturing Technology (Springer, New York, 2019), pp. 187–192

    Google Scholar 

  22. A. Ramaswamy, A.V. Perumal, S.J.S. Chelladurai, Investigation on mechanical properties and dry sliding wear characterization of stir cast LM13 aluminium alloy-ZrB2–TiC particulate hybrid composites. Mater. Res. Exp. 6(6), 066578 (2019)

    Article  CAS  Google Scholar 

  23. R. Ranjan, A.R.K. Singh, Al MMC reinforced with Al2O3 and Cu prepared by stir-casting method, in Innovation in Materials Science and Engineering (Springer, New York, 2019), pp. 219–224

  24. S.N. Kumar, R. Keshavamurthy, M. Haseebuddin, P.G. Koppad, Mechanical properties of aluminium-graphene composite synthesized by powder metallurgy and hot extrusion. Trans. Indian Inst. Met. 70(3), 605–613 (2017)

    Article  CAS  Google Scholar 

  25. L. Zhao, N. Park, Y. Tian, S. Chen, A. Shibata, N. Tsuji, Novel thermomechanical processing methods for achieving ultragrain refinement of low-carbon steel without heavy plastic deformation. Mater. Res. Lett. 5(1), 61–68 (2017)

    Article  CAS  Google Scholar 

  26. S. Nafisi, R. Ghomashchi, Semi-Solid Processing of Alloys and Composites (Multidisciplinary Digital Publishing Institute, Basel, 2019)

    Google Scholar 

  27. S.P. Midson, in Solid State Phenomena, (Trans Tech Publ, Stafa-Zurich, 2015), pp. 487–495

  28. S. Behnamfard, R.A. Khosroshahi, D. Brabazon, R.T. Mousavian, Study on the incorporation of ceramic nanoparticles into the semi-solid A356 melt. Mater. Chem. Phys. 230, 25–36 (2019)

    Article  CAS  Google Scholar 

  29. Z. Fan, X. Fang, S. Ji, Microstructure and mechanical properties of rheo-diecast (RDC) aluminium alloys. Mater. Sci. Eng. A 412(1–2), 298–306 (2005)

    Article  CAS  Google Scholar 

  30. R.T. Mousavian, R.A. Khosroshahi, S. Yazdani, D. Brabazon, A. Boostani, Fabrication of aluminum matrix composites reinforced with nano-to micrometer-sized SiC particles. Mater. Des. 89, 58–70 (2016)

    Article  CAS  Google Scholar 

  31. Y. Afkham, S. Fattahalhoseini, R.A. Khosroshahi, C. Avani, N. Mehrooz, R.T. Mousavian, Incorporation of silicon carbide and alumina particles into the melt of A356 via electroless metallic coating followed by stir casting. Silicon 10(5), 2353–2359 (2018)

    Article  CAS  Google Scholar 

  32. X.G. Chen, M. Fortier, TiAlSi intermetallic formation and its impact on the casting processing in Al–Si alloys. J. Mater. Process. Technol. 210(13), 1780–1786 (2010)

    Article  CAS  Google Scholar 

  33. D. Casari, T.H. Ludwig, M. Merlin, L. Arnberg, G.L. Garagnani, The effect of Ni and V trace elements on the mechanical properties of A356 aluminium foundry alloy in as-cast and T6 heat treated conditions. Mater. Sci. Eng. A 610, 414–426 (2014)

    Article  CAS  Google Scholar 

  34. J. Xu, L. Chen, H. Choi, X. Li, Theoretical study and pathways for nanoparticle capture during solidification of metal melt. J. Phys.: Condens. Matter 24(25), 255304 (2012)

    CAS  Google Scholar 

  35. S. Amirkhanlou, B. Niroumand, Fabrication and characterization of Al356/SiC p semisolid composites by injecting SiC p containing composite powders. J. Mater. Process. Technol. 212(4), 841–847 (2012)

    Article  CAS  Google Scholar 

  36. H. Su, W. Gao, Z. Feng, Z. Lu, Processing, microstructure and tensile properties of nano-sized Al2O3 particle reinforced aluminum matrix composites. Mater. Des. (1980–2015) 36, 590–596 (2012)

    Article  CAS  Google Scholar 

  37. J. Ferguson, G. Kaptay, B.F. Schultz, P.K. Rohatgi, K. Cho, C.-S. Kim, Brownin motion effects on prticle pushing nd engulfment during solidifiction in metl-mtrix composites. Metall. Mater. Trans. A 45(10), 4635–4645 (2014)

    Article  CAS  Google Scholar 

  38. L.Y. Sheng, F. Yang, T.F. Xi, J.T. Guo, H.Q. Ye, Microstructure evolution and mechanical properties of Ni3Al/Al2O3 composite during self-propagation high-temperature synthesis and hot extrusion. Mater. Sci. Eng. A 555, 131–138 (2012)

    Article  CAS  Google Scholar 

  39. B.N. Du, Z.P. Xiao, Y.X. Qiao, L. Zheng, B.Y. Yu, D.K. Xu, L.Y. Sheng, Optimization of microstructure and mechanical property of a Mg–Zn–Y–Nd alloy by extrusion process. J. Alloy. Compd. 775, 990–1001 (2019)

    Article  CAS  Google Scholar 

  40. B. Medasani, Y.H. Park, I. Vasiliev, Theoretical study of the surface energy, stress, and lattice contraction of silver nanoparticles. Phys. Rev. B 75(23), 235436 (2007)

    Article  CAS  Google Scholar 

  41. Y. Yao, Y. Wei, S. Chen, Size effect of the surface energy density of nanoparticles. Surf. Sci. 636, 19–24 (2015)

    Article  CAS  Google Scholar 

  42. S. Amirkhanlou, B. Niroumand, Development of Al356/SiCp cast composites by injection of SiCp containing composite powders. Mater. Des. 32(4), 1895–1902 (2011)

    Article  CAS  Google Scholar 

  43. M.K. Akbari, O. Mirzaee, H. Baharvandi, Fabrication and study on mechanical properties and fracture behavior of nanometric Al2O3 particle-reinforced A356 composites focusing on the parameters of vortex method. Mater. Des. 46, 199–205 (2013)

    Article  CAS  Google Scholar 

  44. M.K. Akbari, H. Baharvandi, K. Shirvanimoghaddam, Tensile and fracture behavior of nano/micro TiB2 particle reinforced casting A356 aluminum alloy composites (1980-2015). Mater. Des. 66, 150–161 (2015)

    Article  CAS  Google Scholar 

  45. A. Mazahery, H. Abdizadeh, H. Baharvandi, Development of high-performance A356/nano-Al2O3 composites. Mater. Sci. Eng. A 518(1), 61–64 (2009)

    Article  CAS  Google Scholar 

  46. A.D. Hamedan, M. Shahmiri, Production of A356–1 wt% SiC nanocomposite by the modified stir casting method. Mater. Sci. Eng. A 556, 921–926 (2012)

    Article  CAS  Google Scholar 

  47. Y. Yao, S. Chen, D. Fang, An interface energy density-based theory considering the coherent interface effect in nanomaterials. J. Mech. Phys. Solids 99, 321–337 (2017)

    Article  CAS  Google Scholar 

  48. C. Suryanarayana, N. Al-Aqeeli, Mechanically alloyed nanocomposites. Prog. Mater Sci. 58(4), 383–502 (2013)

    Article  CAS  Google Scholar 

  49. C. Cao, H. Ling, N. Murali, X. Li, In-situ molten salt reaction and incorporation of small (10 nm) TiC nanoparticles into Al. Materialia 7, 100425 (2019)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Heidarzadeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taherzadeh Mousavian, R., Behnamfard, S., Heidarzadeh, A. et al. Incorporation of SiC Ceramic Nanoparticles into the Aluminum Matrix by a Novel Method: Production of a Metal Matrix Composite. Met. Mater. Int. 27, 2968–2976 (2021). https://doi.org/10.1007/s12540-019-00604-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-019-00604-9

Keywords

Navigation